A Resonance Problem for Non-Local Elliptic Operators
Alessio Fiscella
Università degli Studi di Milano, ItalyRaffaella Servadei
Università della Calabria, Cosenza, ItalyEnrico Valdinoci
Università degli Studi di Milano, Italy

Abstract
In this paper we consider a resonance problem driven by a non-local integrodifferential operator with homogeneous Dirichlet boundary conditions. This problem has a variational structure and we find a solution for it using the Saddle Point Theorem. We prove this result for a general integrodifferential operator of fractional type and from this, as a particular case, we derive an existence theorem for the following fractional Laplacian equation
\[ \left\{ \begin{alignedat}{2} (-\Delta)^s u&=\lambda a(x)u+f(x,u)& \quad&{\mbox{in }} \Omega\\ u&=0& &{\mbox{ in }} \mathbb{R}^n\setminus \Omega, \end{alignedat} \right. \]when is an eigenvalue of the related non-homogenous linear problem with homogeneous Dirichlet boundary data. Here the parameter is fixed, is an open bounded set of \( \RR^n \), , with Lipschitz boundary, is a Lipschitz continuous function, while is a sufficiently smooth function. This existence theorem extends to the non-local setting some results, already known in the literature in the case of the Laplace operator .}
Cite this article
Alessio Fiscella, Raffaella Servadei, Enrico Valdinoci, A Resonance Problem for Non-Local Elliptic Operators. Z. Anal. Anwend. 32 (2013), no. 4, pp. 411–431
DOI 10.4171/ZAA/1492