# A Resonance Problem for Non-Local Elliptic Operators

### Alessio Fiscella

Università degli Studi di Milano, Italy### Raffaella Servadei

Università della Calabria, Cosenza, Italy### Enrico Valdinoci

Università degli Studi di Milano, Italy

## Abstract

In this paper we consider a resonance problem driven by a non-local integrodifferential operator $\mathcal L_K$ with homogeneous Dirichlet boundary conditions. This problem has a variational structure and we find a solution for it using the Saddle Point Theorem. We prove this result for a general integrodifferential operator of fractional type and from this, as a particular case, we derive an existence theorem for the following fractional Laplacian equation

when $\lambda$ is an eigenvalue of the related non-homogenous linear problem with homogeneous Dirichlet boundary data. Here the parameter $s\in (0,1)$ is fixed, $\Omega$ is an open bounded set of $\RR^n$, $n>2s$, with Lipschitz boundary, $a$ is a Lipschitz continuous function, while $f$ is a sufficiently smooth function. This existence theorem extends to the non-local setting some results, already known in the literature in the case of the Laplace operator $-\Delta$.}

## Cite this article

Alessio Fiscella, Raffaella Servadei, Enrico Valdinoci, A Resonance Problem for Non-Local Elliptic Operators. Z. Anal. Anwend. 32 (2013), no. 4, pp. 411–431

DOI 10.4171/ZAA/1492