On quantitative metastability for accretive operators

  • Andrei Sipoş

    University of Bucharest, Bucharest, Romania; Simion Stoilow Institute of Mathematics of the Romanian Academy, Bucharest, Romania; Institute for Logic and Data Science, Bucharest, Romania
On quantitative metastability for accretive operators cover
Download PDF

This article is published open access under our Subscribe to Open model.

Abstract

Kohlenbach and the author have extracted a rate of metastability for approximating curves associated to continuous pseudocontractive self-mappings in Banach spaces which are uniformly convex and uniformly smooth, whose convergence is due to Reich. In this note, we show that this result may be extended to Reich’s original convergence statement involving resolvents of accretive operators.

Cite this article

Andrei Sipoş, On quantitative metastability for accretive operators. Z. Anal. Anwend. 43 (2024), no. 3/4, pp. 417–433

DOI 10.4171/ZAA/1741