Spektrale Geometrie und Huygenssches Prinzip für Tensorfelder und Differentialformen II

  • Rainer Schimming

    Ernst-Moritz-Arndt-Universität Greifswald, Germany
  • Gunter Teumer

    Ernst-Moritz-Arndt-Universität Greifswald, Germany

Abstract

Geometrical properties (especially local flatness) of a Riemannian manifold are recognized from analytical properties (spectrum or Huygens’ principle) of a Laplace operator. Especially, the "definiteness problem" of the spectral geometry of closed manifolds is solved for the canonical Laplace operator which acts on diffrential forms.

Cite this article

Rainer Schimming, Gunter Teumer, Spektrale Geometrie und Huygenssches Prinzip für Tensorfelder und Differentialformen II. Z. Anal. Anwend. 3 (1984), no. 4, pp. 303–313

DOI 10.4171/ZAA/109