Spektrale Geometrie und Huygenssches Prinzip für Tensorfelder und Differentialformen II
Rainer Schimming
Ernst-Moritz-Arndt-Universität Greifswald, GermanyGunter Teumer
Ernst-Moritz-Arndt-Universität Greifswald, Germany
Abstract
Geometrical properties (especially local flatness) of a Riemannian manifold are recognized from analytical properties (spectrum or Huygens’ principle) of a Laplace operator. Especially, the "definiteness problem" of the spectral geometry of closed manifolds is solved for the canonical Laplace operator which acts on diffrential forms.
Cite this article
Rainer Schimming, Gunter Teumer, Spektrale Geometrie und Huygenssches Prinzip für Tensorfelder und Differentialformen II. Z. Anal. Anwend. 3 (1984), no. 4, pp. 303–313
DOI 10.4171/ZAA/109