Triebel–Lizorkin–Lorentz Spaces and the Navier–Stokes Equations
Pascal Hobus
Heinrich-Heine-Universität Düsseldorf, GermanyJürgen Saal
Heinrich-Heine-Universität Düsseldorf, Germany
Abstract
We derive basic properties of Triebel–Lizorkin–Lorentz spaces important in the treatment of PDE. For instance, we prove Triebel–Lizorkin–Lorentz spaces to be of class , to have property , and to admit a multiplier result of Mikhlin type. By utilizing these properties we prove the Laplace and the Stokes operator to admit a bounded -calculus. This is finally applied to construct a unique maximal strong solution for the Navier–Stokes equations on corresponding Triebel–Lizorkin–Lorentz ground spaces.
Cite this article
Pascal Hobus, Jürgen Saal, Triebel–Lizorkin–Lorentz Spaces and the Navier–Stokes Equations. Z. Anal. Anwend. 38 (2019), no. 1, pp. 41–72
DOI 10.4171/ZAA/1627