A Kirchhoff p(x)p(x)-Biharmonic Problem Involving Singular Nonlinearities and Navier Boundary Conditions

  • Khaled Kefi

    Université de Tunis El Manar, Tunisia
  • Kamel Saoudi

    Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
  • Mohammed Mosa AL-Shomrani

    King Abdulaziz University, Jeddah, Saudi Arabia
A Kirchhoff $p(x)$-Biharmonic Problem Involving Singular Nonlinearities and Navier Boundary Conditions cover
Download PDF

A subscription is required to access this article.

Abstract

The aim of this work is to study the existence of weak solutions for a nonhomogeneous singular p(x)p(x)-Kirchhoff problem of the following form

(P±λ){M(t)Δ(Δup(x)2Δu)=a(x)uγ(x)±λuq(x)2u, inΩ,Δu=u=0, onΩ,(\textbf{P}_{\pm \lambda}) \quad \left\{ \begin{aligned} M(t)\Delta(|\Delta u|^{p(x)-2}\Delta u) &=a(x) u^{-\gamma (x)}\pm \lambda u^{q(x)-2}u, &\ &\quad \mathrm{in} \quad \Omega, \\ \Delta u&=u=0, &\ &\quad \mathrm{on} \quad\partial\Omega, \end{aligned} \right.

by using variational techniques and monotonicity arguments combined with the theory of the generalized Lebesgue Sobolev spaces.

Cite this article

Khaled Kefi, Kamel Saoudi, Mohammed Mosa AL-Shomrani, A Kirchhoff p(x)p(x)-Biharmonic Problem Involving Singular Nonlinearities and Navier Boundary Conditions. Z. Anal. Anwend. 40 (2021), no. 2, pp. 167–182

DOI 10.4171/ZAA/1678