Local well-posedness for the inhomogeneous biharmonic nonlinear Schrödinger equation in Sobolev spaces

  • JinMyong An

    Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea
  • JinMyong Kim

    Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
  • PyongJo Ryu

    Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
Local well-posedness for the inhomogeneous biharmonic nonlinear Schrödinger equation in Sobolev spaces cover
Download PDF

A subscription is required to access this article.

Abstract

In this paper, we study the Cauchy problem for the inhomogeneous biharmonic nonlinear Schrödinger (IBNLS) equation

iut+Δ2u=λxbuσu,u(0)=u0Hs(Rd),iu_t +\Delta^2 u=\lambda |x|^{-b}|u|^{\sigma}u,\quad u(0)=u_0 \in H^s (\mathbb{R}^d),

where dNd\in \mathbb{N}, s0s\ge 0, 0<b<40<b<4, σ>0\sigma>0 and λR\lambda \in \mathbb{R}. Under some regularity assumption for the nonlinear term, we prove that the IBNLS equation is locally well-posed in Hs(Rd)H^s(\mathbb{R}^d) if dNd\in \mathbb{N}, 0s<min{2+d2,32d}0\le s <\min \{2+\nobreak\frac{d}{2},\frac{3}{2}d\}, 0<b<min{4,d,32ds,d2+2s}0<b<\min\{4,d,\frac{3}{2}d-s,\frac{d}{2}+2-s\} and 0<σ<σc(s)0<\sigma< \sigma_c(s). Here σc(s)=82bd2s\sigma_c(s)=\frac{8-2b}{d-2s} if s<d2s<\frac{d}{2}, and σc(s)=\sigma_c(s)=\infty if sd2s\ge \frac{d}{2}. Our local well-posedness result improves the ones of Guzmán–Pastor (2020) and Liu–Zhang (2021) by extending the validity of ss and bb.

Cite this article

JinMyong An, JinMyong Kim, PyongJo Ryu, Local well-posedness for the inhomogeneous biharmonic nonlinear Schrödinger equation in Sobolev spaces. Z. Anal. Anwend. 41 (2022), no. 1/2, pp. 239–258

DOI 10.4171/ZAA/1707