Global Regularity in Fractional Order Sobolev Spaces for the p-Laplace Equation on Polyhedral Domains
Carsten Ebmeyer
Universität Bonn, GermanyM. Steinhauer
Universität Bonn, GermanyWenbin Liu
University of Kent at Canterbury, United Kingdom

Abstract
The p-Laplace equation is considered for p > 2 on a n-dimensional convex polyhedral domain under a Dirichlet boundary value condition. Global regularity of weak solutions in weighted Sobolev spaces and in fractional order Nikolskij and Sobolev spaces are proven.
Cite this article
Carsten Ebmeyer, M. Steinhauer, Wenbin Liu, Global Regularity in Fractional Order Sobolev Spaces for the p-Laplace Equation on Polyhedral Domains. Z. Anal. Anwend. 24 (2005), no. 2, pp. 353–374
DOI 10.4171/ZAA/1245