Global Regularity in Fractional Order Sobolev Spaces for the p-Laplace Equation on Polyhedral Domains
Carsten Ebmeyer
Universität Bonn, GermanyWenbin Liu
University of Kent at Canterbury, United KingdomMark Steinhauer
Universität Bonn, Germany
Abstract
The -Laplace equation is considered for on a -dimensional convex polyhedral domain under a Dirichlet boundary value condition. Global regularity of weak solutions in weighted Sobolev spaces and in fractional order Nikolskij and Sobolev spaces are proven.
Cite this article
Carsten Ebmeyer, Wenbin Liu, Mark Steinhauer, Global Regularity in Fractional Order Sobolev Spaces for the p-Laplace Equation on Polyhedral Domains. Z. Anal. Anwend. 24 (2005), no. 2, pp. 353–374
DOI 10.4171/ZAA/1245