# Example of a periodic Neumann waveguide with a gap in its spectrum

### Giuseppe Cardone

Università del Sannio, Benevento, Italy### Andrii Khrabustovskyi

Karlsruher Institut für Technologie, Germany

A subscription is required to access this book chapter.

## Abstract

In this note we investigate spectral properties of a periodic waveguide $\Omega^\varepsilon$ ($\varepsilon$ is a small parameter) obtained from a straight strip by attaching an array of $\varepsilon$-periodically distributed identical protuberances having "room-and-passage" geometry. In the current work we consider the operator $\mathcal{A}^\varepsilon =-\rho^\varepsilon\Delta_{\Omega^\varepsilon}$, where $\Delta_{\Omega^\varepsilon}$ is the Neumann Laplacian in $\Omega^\varepsilon$, the weight $\rho^\varepsilon$ is equal to $1$ everywhere except the union of the „rooms". We will prove that the spectrum of $\mathcal{A}^\varepsilon$ has at least one gap as $\varepsilon$ is small enough provided certain conditions on the weight $\rho^\varepsilon$ and the sizes of attached protuberances hold.