Dynamics Done with Your Bare Hands

Lecture notes by Diana Davis, Bryce Weaver, Roland K. W. Roeder, Pablo Lessa


  • Françoise Dal’Bo

    Université de Rennes I, France
  • François Ledrappier

    University of Notre Dame, USA
  • Amie Wilkinson

    University of Chicago, USA
Dynamics Done with Your Bare Hands cover

A subscription is required to access this book.

This book arose from 4 lectures given at the Undergraduate Summer School of the Thematic Program Dynamics and Boundaries held at the University of Notre Dame. It is intended to introduce (under)graduate students to the field of dynamical systems by emphasizing elementary examples, exercises and bare hands constructions.

The lecture of Diana Davis is devoted to billiard flows on polygons, a simple-sounding class of continuous time dynamical system for which many problems remain open.

Bryce Weaver focuses on the dynamics of a 2x2 matrix acting on the flat torus. This example introduced by Vladimir Arnold illustrates the wide class of uniformly hyperbolic dynamical systems, including the geodesic flow for negatively curved, compact manifolds.

Roland Roeder considers a dynamical system on the complex plane governed by a quadratic map with a complex parameter. These maps exhibit complicated dynamics related to the Mandelbrot set defined as the set of parameters for which the orbit remains bounded.

Pablo Lessa deals with a type of non-deterministic dynamical system: a simple walk on an infinite graph, obtained by starting at a vertex and choosing a random neighbor at each step. The central question concerns the recurrence property. When the graph is a Cayley graph of a group, the behavior of the walk is deeply related to algebraic properties of the group.