EMS Tracts in Mathematics

EMS Tracts in Mathematics

Khruslov cover

This series includes advanced texts and monographs covering all fields in pure and applied mathematics. The Tracts will give a reliable introduction and reference to special fields of current research. The books in the series will in most cases be authored monographs, although edited volumes may be published if appropriate. They are addressed to graduate students seeking access to research topics as well as to the experts in the field working at the frontier of research.

Edited by: Michael Farber (Queen Mary University), Michael Röckner (Universität Bielefeld and Purdue University) and Alexander Varchenko (University of North Carolina at Chapel Hill)

Published in this series:

1. P. Daskalopoulos, C. E. Kenig: Degenerate Diffusions 2. K. H. Hofmann, S. A. Morris: The Lie Theory of Connected Pro-Lie Groups 3. R. Meyer: Local and Analytic Cyclic Homology 4. G. Harutyunyan, B.-W. Schulze: Elliptic Mixed, Transmission and Singular Crack Problems 5. G. Feldman: Functional Equations and Characterization Problems on Locally Compact Abelian Groups 6. E. Novak, H. Woźniakowski: Tractability of Multivariate Problems, Volume I: Linear Information 7. H. Triebel: Function Spaces and Wavelets on Domains 8. S. Albeverio et al.: The Statistical Mechanics of Quantum Lattice Systems 9. G. Böckle, R. Pink: Cohomological Theory of Crystals over Function Fields 10. V. Turaev: Homotopy Quantum Field Theory 11. H. Triebel: Bases in Function Spaces, Sampling, Discrepancy, Numerical integration 12. E. Novak, H. Woźniakowski: Tractability of Multivariate Problems, Volume II: Standard Information for Functionals 13. L. Bessières et al.: Geometrisation of 3-Manifolds 14. S. Börm: Efficient Numerical Methods for Non-local Operators 15. R. Brown, Ph. J. Higgins, R. Sivera: Nonabelian Algebraic Topology 16. M. Jarnicki, P. Pflug: Separately Analytic Functions 17. A. Björn, J. Björn: Nonlinear Potential Theory on Metric Spaces 18. E. Novak, H. Woźniakowski: Tractability of Multivariate Problems, Volume III: Standard Information for Operators 19. B. Bojarski et al.: Infinitesimal Geometry of Quasiconformal and Bi-Lipschitz Mappings in the Plane 20. H. Triebel: Local Function Spaces, Heat and Navier–Stokes Equations 21. K. Nipp, D. Stoffer: Invariant Manifolds in Discrete and Continuous Dynamical Systems 22. P. Dehornoy et al.: Foundations of Garside Theory 23. A. C. Ponce: Elliptic PDEs, Measures and Capacities 24. H. Triebel: Hybrid Function Spaces, Heat and Navier-Stokes Equations 25. Y. Cornulier, P. de la Harpe: Metric Geometry of Locally Compact Groups 26. V. Guedj, A. Zeriahi: Degenerate Complex Monge–Ampère Equations 27. N. Raymond: Bound States of the Magnetic Schrödinger Operator 28. A. Henrot, M. Pierre: Shape Variation and Optimization 29. A. V. Kosyak: Regular, Quasi-regular and Induced Representations of Infinite-dimensional Groups 30. V. G. Maz'ya: Boundary Behavior of Solutions to Elliptic Equations in General Domains 31. I. W. Gel'man, V. G. Maz'ya: Estimates for Differential Operators in Half-space 32. S. Kondō: K3 Surfaces 33. S. I. Repin, S. A. Sauter: Accuracy of Mathematical Models 34. E. Ya. Khruslov: Homogenized Models of Suspension Dynamics