# IRMA Lectures in Mathematics and Theoretical Physics

IRMA Lectures in Mathematics and Theoretical Physics

This series is devoted to the publication of research monographs, conferences or workshops originating from the Institut de Recherche Mathématique Avancée (Strasbourg, France). The goal is to promote recent advances in mathematics and theoretical physics and make them accessible to a wide circle of professional and aspiring mathematicians and physicists. Edited by: Olivier Guichard (Institut de Recherche Mathématique Avancée) ISSN print 2523-5133, ISSN online 2523-5141

**Published in this series:**

6. A. Papadopoulos: Metric Spaces, Convexity and Nonpositive Curvature 7. S. Cordier et al. (Eds): Numerical Methods for Hyperbolic and Kinetic Problems 8. O. Biquard (Ed.): AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries 9. D. Bertrand et al. (Eds): Differential Equations and Quantum Groups 10. L. Nyssen (Ed.): Physics and Number Theory 11. A. Papadopoulos (Ed.): Handbook of Teichmüller Theory, Volume I 12. B. Enriquez (Ed.): Quantum Groups 13. A. Papadopoulos (Ed.): Handbook of Teichmüller Theory, Volume II 14. M. Weber: Dynamical Systems and Processes 15. A. Connes, F. Fauvet, J.-P. Ramis (Eds): Renormalization and Galois Theories 16. V. Cortés (Ed.): Handbook of Pseudo-Riemannian Geometry and Supersymmetry 17. A. Papadopoulos (Ed.): Handbook of Teichmüller Theory, Volume III 18. A. Papadopoulos (Ed.): Strasbourg Master Class on Geometry 19. A. Papadopoulos (Ed.): Handbook of Teichmüller Theory, Volume IV 20. V. Blanlœil, T. Ohmoto (Eds): Singularities in Geometry and Topology 21. K. Ebrahimi-Fard, F. Fauvet (Eds): Faà di Bruno Hopf Algebras, Dyson–Schwinger Equations, and Lie–Butcher Series 22. A. Papadopoulos, M. Troyanov (Eds): Handbook of Hilbert Geometry 23. L. Ji, A. Papadopoulos (Eds): Sophus Lie and Felix Klein: The Erlangen Program and Its Impact in Mathematics and Physics 24. J. Latschev, A. Oancea (Eds): Free Loop Spaces in Geometry and Topology 25. T. Shioya: Metric Measure Geometry 26. A. Papadopoulos (Ed.): Handbook of Teichmüller Theory, Volume V 27. A. Papadopoulos (Ed.): Handbook of Teichmüller Theory, Volume VI 28. Y. Bugeaud: Linear Forms in Logarithms and Applications 29. V. Alberge, A. Papadopoulos (Eds): Eighteen Essays in Non-Euclidean Geometry 30. A. Papadopoulos (Ed.): Handbook of Teichmüller Theory, Volume VII 31. F. Chapoton et al. (Eds): Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA) 32. F. Chapoton et al. (Eds): Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA) 33. A. Papadopoulos (Ed.): Topology and Geometry