| FrontmatterDownload pp. i–iv |
| PrefaceDownload p. v |
| ContentsDownload pp. vii–ix |
1 | Basics: decategorification and categorificationpp. 1–7 |
2 | Basics: from categorification of linear maps to 2-categoriespp. 9–15 |
3 | Basics: 2-representations of finitary 2-categoriespp. 17–23 |
4 | Category O: definitionspp. 25–32 |
5 | Category O: projective and shuffling functorspp. 33–39 |
6 | Category O: twisting and completionpp. 41–46 |
7 | Category O: grading and combinatoricspp. 47–53 |
8 | Sn-categorification: Soergel bimodules, cells and Specht modulespp. 55–60 |
9 | Sn-categorification: (induced) cell modulespp. 61–66 |
10 | Category O: Koszul dualitypp. 67–73 |
11 | sl2-categorification: simple finite-dimensional modulespp. 75–80 |
12 | Application: categorification of the Jones polynomialpp. 81–86 |
13 | sl2-categorification of Chuang and Rouquierpp. 87–92 |
14 | Application: blocks of F[Sn] and Broué’s conjecturepp. 93–98 |
15 | Applications of Sn-categorificationspp. 99–104 |
16 | Exercisespp. 105–107 |
| Bibliographypp. 109–115 |
| Indexpp. 117–119 |