Symplectic field theory and its applications
Yasha Eliashberg
Stanford University, United States
Download Chapter PDF
A subscription is required to access this book chapter.
Abstract
Symplectic field theory (SFT) attempts to approach the theory of holomorphic curves in symplectic manifolds (also called Gromov-Witten theory) in the spirit of a topological field theory. This naturally leads to new algebraic structures which seems to have interesting applications and connections not only in symplectic geometry but also in other areas of mathematics, e.g. topology and integrable PDE. In this talk we sketch out the formal algebraic structure of SFT and discuss some current work towards its applications.