Floer homology of 3-manifolds with torus boundary
Jacob Rasmussen
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, United Kingdom
This book chapter is published open access.
Abstract
Manifolds with torus boundary have played a special role in the study of Floer homology for 3-manifolds since the early days of the subject. In joint work with Jonathan Hanselman and Liam Watson, we defined a geometrical Heegaard Floer invariant for 3-manifolds with torus boundary. The invariant is a reformulation of the bordered Floer homology of Lipshitz, Ozsváth, and Thurston, and takes the form of a collection of immersed closed curves (possibly decorated with local systems) in a covering space of the punctured torus. We briefly discuss the construction of the invariant and some applications to the L-space conjecture of Boyer–Gordon–Watson and Juhász. We then describe a generalization to manifolds with sutured boundary, and some applications to the study of satellite knots.