Decomposition of Brownian loop-soup clusters

  • Wei Qian

    University of Cambridge, UK and ETH Zürich, Switzerland
  • Wendelin Werner

    ETH Zürich, Switzerland
Decomposition of Brownian loop-soup clusters cover

A subscription is required to access this article.

Abstract

We study the structure of Brownian loop-soup clusters in two dimensions. Among other things, we obtain the following decomposition of the clusters with critical intensity: If one conditions a loop-soup cluster on its outer boundary (which is known to be an SLE-type loop), then the union of all excursions away from by all the Brownian loops in the loop-soup that touch is distributed exactly like the union of all excursions of a Poisson point process of Brownian excursions in the domain enclosed by .

A related result that we derive and use is that the couplings of the Gaussian Free Field (GFF) with CLE via level lines (by Miller–Sheffield), of the square of the GFF with loop-soups via occupation times (by Le Jan), and of the CLE with loop-soups via loop-soup clusters (by Sheffield and Werner) can be made to coincide. An instrumental role in our proof of this fact is played by Lupu’s description of CLE as limits of discrete loop-soup clusters.

Cite this article

Wei Qian, Wendelin Werner, Decomposition of Brownian loop-soup clusters. J. Eur. Math. Soc. 21 (2019), no. 10, pp. 3225–3253

DOI 10.4171/JEMS/902