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Rank bounds in link Floer homology and detection results

Fraser Binns and Subhankar Dey

Abstract. Viewing the BRAID invariant as a generator of link Floer homology, we generalize
work of Baldwin–Vela-Vick to obtain rank bounds on the next-to-top grading of knot Floer
homology. These allow us to classify links with knot Floer homology of rank at most eight and
prove a variant of a classification of links with Khovanov homology of low rank due to Xie–
Zhang. In another direction, we use a variant of Ozsváth–Szabó’s classification of E2 collapsed
Z˚Z filtered chain complexes to show that knot Floer homology detects T .2; 8/ and T .2; 10/.
Combining these techniques with the spectral sequences of Batson–Seed, Dowlin, and Lee, we
can show that Khovanov homology likewise detects T .2; 8/ and T .2; 10/.

1. Introduction

Link Floer homology is a powerful invariant of links in S3 due to Ozsváth–Szabó,
taking value in the category of multi-graded vector spaces [36]. While powerful, it
is not a complete invariant; there exist non-isotopic links with isomorphic link Floer
homology [20]. One of the main goals of this paper is to exhibit links which are fully
determined—“detected”—by their link Floer homology. More generally, we address
several variants of the “geography” question for link Floer homology—namely which
vector spaces arise as the link Floer homology of some link—as well as the “botany”
question—which links have a prescribed link Floer homology.

One of our approaches to the geography problem goes through a result that uses
a contact geometric invariant which lives in Heegaard Floer homology. Namely, we
study the BRAID invariant, an invariant of transverse links due to Baldwin–Vela-Vick–
Vértesi [8] which is a version of Ozsváth–Szabó’s contact class [35]. In particular,
we generalize the rank bound from Baldwin–Vela-Vick [2, Theorem 1.1]. The most
concise version of our result is the following.

Theorem 4.1. LetL be a non-trivial n-component fibered link in a rational homology
sphere. Then

rank
�
bHFK

�
LI n � 2 � �.L/

2

��
� n:
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Here, �.L/ denotes the maximal Euler characteristic of a potentially disconnected
surface bounding L. We may take coefficients to be Z, Z2—the field with two ele-
ments—or Q, as we do for the remainder of this paper unless otherwise specified.
Some care is required when working with Z or Q; see Sections 2 and 3 for details.
Note that n�2��.L/

2
is the next to top Alexander grading of knot Floer homology. See

Lemma 4.3 and Corollary 4.2 for stronger versions of Theorem 4.1 under appropriate
additional hypotheses.

Theorem 4.1 allows us to prove a number of detection results.

Theorem 8.1. If rank.bHFK.L// D 4, then L is a Hopf link or the three-component
unlink.

Theorem 8.2. If rank.bHFK.L// D 6, then L is a disjoint union of an unknot and a
trefoil.

Theorem 8.3. If rank.bHFK.L// D 8, then L is T .2; 4/, T .2;�4/, a four-component
unlink, or the disjoint union of a Hopf link and an unknot.

Theorem 8.6. Knot Floer homology detects the link consisting of T .2; 3/ and a
meridian.

These results can be viewed as extensions of some of the detection results in [3]
and hold for coefficients in Z2, Z, or Q. We note also that, while this manuscript was
in preparation, an independent proof of the fact that the disjoint union of the Hopf link
and the unknot is the only three-component link with knot Floer homology of rank
eight appeared in [25].

Applying Dowlin’s spectral sequence from Khovanov homology to knot Floer
homology, Theorems 8.1, 8.2, and 8.3 allow us to prove variants of results due to
Xie–Zhang [47].

Corollary 9.1. Suppose that L is a two-component pointed link with

rank.fKh.L; pIQ// � 4:

Then, L is one of the following:

• an unlink,

• a Hopf link,

• T .2; 4/ or T .2;�4/.
Corollary 9.2. Suppose that L is a three-component pointed link. Then,

rank.fKh.L; pIQ// > 2:
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Here, fKh.L;pIQ/ is the reduced Khovanov homology of the pointed link .L;p/.
Tye Lidman has pointed out to the authors that Corollary 9.2 can be obtained from
the spectral sequence from reduced Khovanov homology of L to the double-branched
cover of L due to Ozsváth–Szabó [35].

Using different methods, we can show link Floer homology detection results for
a number of infinite families of links. Let K2;2n denote the cable link with pattern
T .2; 2n/ and companion K. We show that link Floer homology detects the .2; 2n/
cables of two of the non-trivial fibered knots that knot Floer homology is currently
known to detect, namely, the trefoils and the figure eight1.

Theorem 5.1. Link Floer homology detects T .2; 3/2;2n for all n.

Note here that the .2; 2n/-cable of T .2; 3/ is the .2;�2n/-cable of T .2;�3/.
Theorem 5.2. Let K be the figure eight knot, i.e., 41. Link Floer homology detects
K2;2n for every n.

We prove these results over Q, Z, and Z2, apart from in the n D 0 cases in which
case we only prove the result with Z2 coefficients.

Our second approach to the geography problem is via algebra, namely, a version
of Ozsváth–Szabó’s classification of E2 collapsed chain complexes [36, Section 12].
We obtain the following results.

Theorem 7.1. Knot Floer homology detects T .2; 8/.

Theorem 7.2. Knot Floer homology detects T .2; 10/.

These results again hold over Q, Z, and Z2. Here, we have given T .2; 8/ and
T .2;10/ the braid orientation, contrary to the case in [11], where knot Floer homology
was shown to detect T .2; 2n/, oriented as the boundary of an annulus, for all n.

Combining these techniques with the Dowlin [12], Lee [27], and Batson–Seed [9]
spectral sequences we obtain the corresponding detection results for Khovanov homo-
logy.

Theorem 9.3. Suppose that Kh.LIZ/ŠKh.T.2;8/IZ/. Then,L is isotopic toT.2;8/.

Theorem 9.4. Suppose that Kh.LI Z/ Š Kh.T .2; 10/I Z/. Then, L is isotopic to
T .2; 10/.

Khovanov homology was previously known to detect T .2; 2n/ for nD˙3 by the
work of Martin [28], nD˙2 by Xie–Zhang [46], nD˙1 by Baldwin–Sivek–Xie [7],
and n D 0 by a combination of Hedden–Watson [18] and Kronheimer–Mrowka [26].

1Since this paper first appeared, it has also been shown that knot Floer homology detects
T .2;˙5/ [14] as well as some other knots, see [5].
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The outline of this paper is as follows: in Sections 2 and 3, we review pertinent
properties of link Floer homology and the BRAID invariant, respectively. In Sec-
tion 4, we use the BRAID invariant to prove several rank bounds results in link Floer
homology. We collect our detection results for .2; 2n/-cables in Section 5. We prove a
technical results necessary for subsequent sections in Section 6. Section 7 is devoted
to showing that knot Floer homology detects T .2; 8/ and T .2; 10/, in Section 8, we
give botany results for the rank of knot Floer homology, and in Section 9, we give
detection results for Khovanov homology.

2. A very brief review of link Floer homology

In this section, we review link Floer homology, partially to fix conventions and nota-
tion, with an emphasis on the structural properties that we will use in the subsequent
sections.

Let L be an oriented n-component link in a rational homology sphere M . The
pair .L;M/ can be encoded as a Heegaard diagram for M with n pairs of basepoints
¹wi ; ziº. The link Floer complex of L, defined by Ozsváth–Szabó in [36], is a multi-
graded Z2ŒU1; U2; : : : ; Un� chain complex with underlying vector space

CFL�.L;M/ Š
M

m;A1;A2;:::;An

CFL�m.L;M/.A1; A2; : : : ; An/:

The three manifold M is often apparent from the context and duly suppressed in
the notation. The Ai gradings are called the Alexander gradings and can be thought
of as elements in

ZC `k.Li ; L � Li /
2

;

while m is called the Maslov grading, which is integer valued. CFL�.L/ is endowed
with a differential which counts pseudo-holomorphic disks in a certain auxiliary sym-
plectic manifold endowed with an appropriate almost complex structure which do not
intersect submanifolds Vzi

determined by zi . These counts are weighted by a count of
intersections with the manifolds Vwi

, determined by wi . The filtered chain homotopy
type of CFL�.L/ is an invariant ofL, which we refer to as the link Floer complex ofL.
The homology of CFL�.L/ is denoted by HFL�.L/. CFL�.L/ has a quotient defined
by setting Ui D 0 for all i whose filtered chain homotopy type is also an invariant
of L. This complex is denoted by bCFL.L/ and has homology denoted by bHFL.L/,
which we will call the link Floer homology of L. The link Floer homology polytope
of L is defined as the convex hull of the multi-Alexander gradings of bHFL.L/ with
non-trivial support. The link Floer polytope determines the Thurston polytope of the
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link exterior by a result of Ozsváth–Szabó [37]. Note that bHFL.xL/ is the dual—in the
sense of [3, equation (3)]—of bHFL.L/, where xL is the mirror of L.

For each component Li of L, there is a spectral sequence from bHFL.L/ to

bHFL.L � Li /˝ V
�
`k.Li ; Lj /

2

�
:

Here,
V Š F0 ˚ F�1;

supported in multi-Alexander grading zero, while
� `k.Li ;Lj /

2

�
indicates a shift in the

Aj grading, corresponding to Lj which is a component in L other than Li . Indeed,
bHFL.L/ can be viewed as the graded part of a multi-filtered chain complex with total
homology cHF.M/˝ V n�1, where cHF.M/ is the Heegaard Floer homology of M as
defined by Ozsváth–Szabó [34]. If a component Li of L is fibered and L is non-split,
thenL�Li is braided aboutLi exactly when bHFL.L/ is of rank 2n�1 in the maximal
Ai grading of non-trivial support by a result of Martin [28].

The knot Floer homology of L, bHFK.L/, is an oriented link invariant due inde-
pendently to J. Rasmussen [39] and Ozsváth–Szabó [33] that can be obtained from
bHFL.L/ by projecting the multi-Alexander grading onto the diagonal and shifting
the Maslov gradings up by n�1

2
. For an n-component link L, bHFK.L/ can also be

thought as the knot Floer homology of the knotified link �.L/� .#n�1.S2 � S1//#M
(see [34]). Since the knot Floer chain complex is a filtered version of Heegaard Floer
chain complex, we have that

dim.1HFK.L// � dim.cHF.M.#n�1.S2 � S1//// D 2n�1 dim.cHF.M//:

It likewise follows that

dim.bHFK.L// � dim.cHF.M// � 2n�1 mod 2

so that dim.1HFK.L// is odd only if L has a single component. Also note that
bHFK.L/ determines the maximal Euler characteristic of a surface bounding L [30],

as well as whether or not L fibered [16, 31].
Versions of bHFL.L;M/ and bHFK.L;M/ can also be defined with Z or Q coef-

ficients [41]. In fact, there are 2n�1 versions of each theory, each corresponding to
a coherent system of orientations on the moduli space of pseudo-holomorphic disks.
We will only have to be careful with which version of these theories we are using
when applying work of Dowlin [12] which gives a spectral sequence from Khovanov
homology to knot Floer homology endowed with the orientation given in [1]. As is
customary, we suppress the dependence of knot Floer homology on the coherent sys-
tem of orientations in our notation. Each of the knot Floer homology theories detects
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the maximal Euler characteristic of a surface bounding L [30], as well as whether or
not L is fibered. This follows from work of Juhász [22].

The Conway polynomial ofL can be obtained as an appropriate decategorification
of bHFL.L/. A result of Hoste [21] implies that the Conway polynomial detects the
linking number of two-component links. It follows that knot Floer homology and link
Floer homology also detect the linking number of two-component links.

3. The BRAID invariant

In this section, we review the BRAID invariant, an invariant of (generalized) braids
due to Baldwin–Vela-Vick–Vértesi [8]. We find two different perspectives on braids to
be useful. First, we define a braid in an open book .†;�/ to be a link which intersects
every page transversely, up to isotopy through families of such links. Any such braid
can be recovered from the data of a pointed open book .†;�; ¹piº/, where � W†!†

fixes the points ¹piº � † as a set. We assume henceforth that .†; �/ is an open book
decomposition for some rational homology sphere.

The BRAID invariant of a braidL represented by a pointed open book .†;�;¹piº/
is defined concretely from a Heegaard diagram determined by the pointed book. We
recall the construction here. Take a basis of arcs ¹aj º for † � ¹piº. Here, a basis of
arcs is a maximal collection of properly embedded arcs in † � ¹piº that are homo-
logically independent in H1.† � ¹piº; @†/. An example of such is shown in red in
the lower half of the surface shown in Figure 1. Consider the basis of arcs bj obtained
by pushing the ends of the aj curves around @† in the direction dictated by the orien-
tation of @† and isotoping so that aj \ bj consists of a single point, cj . In Figure 1,
the points cj are represented by green dots. Form a multi-pointed Heegaard diagram
consisting of †

S
@†.�†/ with ˛ curves consisting of the union of the a arcs in †

and �† and ˇ curves consisting of the union of the b arcs in † and �.b/ in �†.
In Figure 1, we have not shown �.bj / for all j to avoid clutter. The wi basepoints
consist of ¹piº � �† while the zi basepoints consist of ¹piº � †. In Figure 1, the
two black dots in the upper half of the diagram are wi basepoints, while the two black
dots in the lower half of the diagram represent zi basepoints. We call diagrams con-
structed in this manner Heegaard diagrams adapted to .†;�; ¹piº/, ¹aj º. The BRAID
invariant of L is defined as the homology class of ¹ciº. This can be viewed as a class
in either bCFL.�M;LIZ2/ or CFL�.�M;LIZ2/. We denote these classes by Ot .L/
or t .L/, respectively. Baldwin–Vela-Vick–Vértesi show that Ot .L/ and t .L/ are braid
invariants when viewed as elements of bHFK.�M; LIZ2/ and HFK�.�M; LIZ2/,
respectively. Tovstopyat-Nelip further notes that the BRAID invariant can be thought
of as a well-defined class in eHFK.�M; LIZ2/, a version of knot Floer homology
defined for links encoded by multiple basepoints [44]. We note that Ot .L/ is in fact
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Figure 1. A Heegaard diagram adapted to a pointed open book .†; �; ¹pi º/ and basis of arcs
¹aj º. Note that we have only shown segments of some of the ˇ curves. The green dots indicate
the intersection points that represent the BRAID invariant. The orange region is the shadow of
a pseudo-holomorphic disk which plays a role in Section 4. The blue dots in the lower half of
the surface are wi basepoints, which come from the points pi in the pointed open book. The
basepoints in the upper half of the surface are zi . Note that not all of the basepoints are shown
in the figure.

well defined in bHFL.�M;LIZ2/ complete with all Alexander gradings. We note also
that we may conflate Ot .L/ and the associated generator of the chain complex in Sec-
tion 4.

The BRAID invariant has some strong non-vanishing properties. The strongest of
these, a result due to Tovstopyat-Nelip, is that

Ot .B [K/ ¤ 0;

where B is a link braided about a fibered link K [44, Theorem 1.3]. Note that for
Ot .B [K/ to be well defined, we implicitly push K transversely off itself so that B [
K is braided with respect to .†; �/. Note that Tovstopyat–Nelip’s result generalizes
earlier work of Vela-Vick [45] and Vela-Vick–Etnyre [13]. In the case that B D ;, the
Alexander grading of Ot .B [K/ is readily computed [44, Lemma 4.2].

We now discuss some mapping-class group theoretic properties of braids which
will be of importance in Section 4. Given a pointed open book .†; �; ¹piº/, there are
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two notions of an arc being sent to the right. We introduce a new terminology to dis-
tinguish these two notions. We say an arc a � † is relatively sent to the right by � if
after �.a/ has been isotoped in†� ¹piº so that �.a/ and a intersect minimally, �.a/
is to the right of a. This is the notion of being sent to the right used in [8]. Note that if
a pointed open book .†; �; ¹piº/ representing a braid L has an essential arc which is
relatively sent to the left then Ot .L/ and t .L/ are both trivial in the homology ([8, The-
orem 1.4]). We say that a pointed open book is relatively right veering on a component
of @† if every arc which intersects that component of @† is relatively sent to the right.

We say that a is absolutely sent to the right if a is sent to the right after isotoping
�.a/ in †—in particular, �.a/ is allowed to pass over basepoints under the isotopy.
We say that a pointed open book is absolutely right veering on a component of @† if
every arc which intersects that component of @† is absolutely sent to the right. The
distinction between these two concepts plays an important role in the next section.
Similar definitions also apply for notions of left veering.

For the purposes of this paper, we do not count arcs that are fixed up to isotopy
as right or left veering. That is, we have the following trichotomy: arcs are either
(relatively) sent to the left, right, or fixed up to isotopy.

We conclude this section by noting that, while the braid invariant was originally
defined in homology theories with coefficients in Z2, it is in fact well defined up to
sign with coefficients in Z. In particular, if L is a fibered link, the BRAID invariant
generates the top Alexander grading of bHFK.LIZ/ or bHFK.LIQ/.

4. A rank bound from the BRAID invariant

Baldwin–Vela-Vick proved that the knot Floer homology of a fibered knot is non-
trivial in the next to top Alexander grading [2]. In this section, we generalize their
techniques to obtain a number of related results. In particular, we show the following.

Theorem 4.1. LetL be a non-trivial n-component fibered link in a rational homology
sphere, then

rank
�
bHFK

�
L;
n � 2 � �.L/

2

��
� n:

This implies a generalization of theorem Ni [32, Theorem A.1].

Corollary 4.2. Suppose that L is a non-trivial fibered n-component link in a rational
homology sphere, with monodromy neither relatively right veering nor relatively left
veering on each component. Then

rank
�
bHFK

�
L;
n � 2 � �.L/

2

��
� 2n:
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Before proceeding to the technical lemma which underlies these results, we fix
some notation. @T will denote the component of the total differential on bCFL.L/,
namely, the one for which

H�.bCFL.L/; @T / Š cHF.M/˝ V n�1;

where M is the underlying rational homology sphere and n is the number of compo-
nents of L. @cCFL will denote the link Floer Homology differential; i.e.,

H�.bCFL.L/; @cCFL/ Š bHFL.L/:

Lemma 4.3. Suppose that .†;�; ¹piº/ is a pointed open book representing a braidL
in a rational homology sphereM . Suppose that � sends an essential arc a� .†;¹piº/
absolutely to the left. Then, there is a generator d 2 bCFL.�M; xL; Œ†�/ with

@T d D Ot .L/ and @cCFL.d/ D 0:

To prove Lemma 4.3, we explicitly find the generator d. We then show that @T dD
Ot .L/ using a diagrammatic argument, and note that it is easy to determine the multi-
Alexander grading of d relative to that of Ot .L/.
Proof of Lemma 4.3. Fixing notation as in the statement of the lemma, we extend a to
a basis of arcs ¹aj º for .†;�; ¹piº/. Then, we isotope �.a/ to a curve b in �† so that
a and b intersect minimally. Consider the surface † [ �†, and the alpha and beta
curves—˛, ˇ—associated to a in the Heegaard diagram adapted to ..†; �/; ¹aj º/.
Note that since a is absolutely sent to the left there is an intersection point d 2 ˛ \
ˇ \�† and a bigon in †[ .�†/ with corners at c 2 ˛ \ ˇ;2 Ot .L/ and d and edges
contained in ˛ and ˇ.

Consider now b0, the arc formed after isotoping �.a/ in .�†; ¹piº/ so that a and
b0 intersect minimally. Let ˇ0 be the associated beta curve in the adapted Heegaard
diagram. We claim that there is a map B W ¹z 2 C W jzj � 1º ! † [ �† with

B.¹z W jzj D 1;<.z/ � 0º/ � ˇ0;
B.¹z W jzj D 1;<.z/ � 0º/ � ˛;

whose image, counted with multiplicity, is a linear combination of regions

.† [ �†/
��[

i

.˛i / [
[
i

.ˇ0i /

�
:

To see this, let bt W Œ0; 1� � Œ0; 1�! † be an isotopy from the arc b0 D b to the arc
b1 D b0 (where we view arcs as smooth embedding b; b0 W Œ0; 1�!†). Note that there
is a continuous map Œ0; 1�! ¹0; 1º which takes the value 0 if the image of bt , counted
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ci
cj

d0

Figure 2. A picture of part of the Heegaard diagram used to define the BRAID invariant for the
binding of an open book, via a transverse push-off. The BRAID invariant includes the green
dots ci and cj . As described in Lemma 4.4, d0 includes ci , but not cj , instead including d . The
orange region is the shadow of a pseudo-holomorphic disk from d to the BRAID invariant. The
black dots are basepoints.

with multiplicity is a linear combination of regions .†[�†/n.˛ [ ˇt /, where ˇt are
the ˇ curves obtained from bt . Examples of such maps of bigons can be seen shaded
in orange in Figure 1, or in Figure 2. The claim follows from continuity. We note that
the image of B may have multiplicity strictly greater than one at certain points.

Let d 0DB.i/2�†, as shown in Figure 2. Consider the generator of bCFL.�M; xL/,
d, given by ¹d 0; c2; : : : ; c2gCn�1º. Here, the intersection points ci are intersection
points of the remaining ˛i and ˇi curves in †. h@T d; Ot .L/i ¤ 0, as witnessed by the
bigon B , which is the shadow of a pseudo-holomorphic disk in Symj˛j.† [ �†/,
where j˛j is the number of ˛ curves. There is no other pseudo-holomorphic disk from
d to Ot .L/—emanating to the north east of d 0 as opposed to south west, in Figure 1,
or in Figure 2—as this would imply that a and �.a/ are isotopic, contradicting the
hypothesis that a is absolutely sent the left.

Finally,
@cCFLd D 0;

as else a and b0 would not intersect minimally as arcs in .�†; ¹piº/.
We note that, in Lemma 4.3, the multi-Alexander grading of d is determined by the

multi-Alexander grading of Ot .L/ and the number ofwi basepoints and their respective
multiplicity, ni , in the image of the map B . Let xk denote the kth Alexander grading
of the BRAID invariant of a braidL. It follows that d hasAk grading given by xk C nk
for all k.

We now prove a more general version of Theorem 4.1.
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Lemma 4.4. With the hypotheses of Lemma 4.3 together with the additional hypoth-
esis that Ot .L/ ¤ 0, we have that

rank
�M

x2I

bHFL.L; x/
�
� 1;

where

I D ®.A1; A2; : : : ; An/ j xj � Aj � xj C nj for all j and 9 i such that Ai ¤ xi
¯

and n is the number of components of L and we take coefficients in a field.

Proof. We proceed using the same notation as in Lemma 4.3. Note that d is a cycle in
.bCFL.L/; @CFL/. If d ¤ @cCFLe for any e, the result follows. Suppose then that there is
an e with @cCFLe D d.

Observe that since we are working with coefficients in a field .bCFL.L/; @T / has a
model in which

bCFL.L/ Š bHFL.L/

(see [20, Reduction Lemma]) in every Alexander grading except for that of d, Ot .L/.
Since

@T .d/ D Ot .L/ ¤ 0 and @2T e D 0;
we have that

@T .e/ � d ¤ 0 2
M
x2J

bCFL.L; x/;

where

JD®.A1;A2; : : : ;An/ j xj � Aj � xj C nj for all j and 9i such that Ai ¤ xiCni
¯
:

Suppose towards a contradiction that

rank
�M

x2I

bHFL.L; x/
�
D 0:

Then, in fact, we have that @T .e/ � d 2 bHFL.L; .x1; x2; : : : ; xn//. It follows that

@T .@T .e/ � d/ D @cCFL.@T .e/ � d/ D Ot .L/;

contradicting the fact that Ot .L/ ¤ 0.

Remark 4.5. Suppose that .†;�; ¹piº/ is a pointed open book for a link L in a ratio-
nal homology sphere M such that neither � nor ��1 sends an essential arc absolutely
to the left. Then, � fixes every essential arc and is in fact the identity. In this case, L
is an unlink in M . The assumption on the arcs used in Lemma 4.3 and Lemma 4.4 is
therefore only the mildest of restrictions, at least up to mirroring.
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We now specialize Lemma 4.4 to prove Theorem 4.1.

Proof of Theorem 4.1. An n-component fibered link L arising as the binding of an
open book .†; �/ may be perturbed to yield an n-braid B in the complement of L,
with associated pointed monodromy .†; �0/. Consider the mth boundary component
of †, Pm. After mirroring, we may assume that � sends some non-separating arc a
with an endpoint on Pm absolutely to the left or fixes some non-separating arc. Extend
this arc to a basis for .†; �0/, and consider Ot .B/.

Suppose that a is fixed up to isotopy. Then,M contains an S1 � S2 summand and
hence cannot be a rational homology sphere, a contradiction.

Suppose that a is sent absolutely to the left. Then, Ot .B/ ¤ 0 by [44, Theorem
1.1]. Suppose that Ot .B/ has multi-Alexander grading .A1; A2; : : : ; An/. The bigon
obtained via Lemma 4.3, and pictured in Figure 2 in this special case, contains a
single wm basepoint. Thus, applying Lemma 4.4, and noting that in this special case
the hypothesis that we work with a field is unnecessary, yields a non-trivial generator
in multi-Alexander grading .A1; A2; : : : ; Am � 1; : : : ; An/.

Applying this procedure for each boundary component yields a total of n distinct
generators with multi-Alexander grading .A1; A2; : : : ; An/ satisfying

A1 C A2 C � � � C An D n � 2 � �.L/
2

;

whence the result follows from the fact that knot Floer homology is obtained by col-
lapsing the multi-Alexander grading to a single grading.

Proof of Corollary 4.2. ViewL as an n-braid as in the proof of Theorem 4.1. Suppose
that Ot .L/ is of multi-Alexander grading .A1; A2; : : : ; An/. Theorem 4.1 implies that,
for all i ,

rank.bHFL.LI .A1; : : : ; Ai � 1; : : : ; An/// � 1:
Suppose that there exists an i for which rank.bHFL.LI .A1; : : : ; Ai � 1; : : : ; An/// D
1. Consider CFL�.L/, together with the differential @�T which counts all pseudo-
holomorphic disks. Note that CFL�.L/ can be thought of as a ..A1; A2; : : : ; An/,
.j1; j2; : : : ; jn//-graded complex, where the ji gradings are the Ui gradings, so that
the action of Ui decreases the ji and Ai grading by 1 and preserves the other grad-
ings. Since L is fibered, there is a unique generator x of CFL�.L/ with maximal
A1 C A2 C � � � C An grading and ji D 0 for all i . Since rank.bHFL.LI .A1; : : : ; Ai �
1; : : : ; An/// D 1, we may take there to be a unique generator y of CFL�.L/ with
multi-Alexander grading .A1; A2; : : : ; Ai � 1; : : : ; An/, and again, ji D 0 for all i .

Since � sends an arc in † with endpoint on Li to the left there is a component
of @�T from x to y. Note that this property is preserved by filtered chain homotopy.
Since � sends an arc in† with endpoint on Li to the right, there is a component of @�T
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from y to Uix. Note again that this property is preserved by filtered chain homotopy.
It follows from the proof of Theorem 4.1 that h.@�T /2.x/; Uxi ¤ 0, a contradiction.
Thus, rank.bHFL.LI .A1; : : : ; Ai � 1; : : : ; An/// � 2 for all i and the result follows
from the fact that knot Floer homology is obtained from link Floer homology by
collapsing the multi-Alexander grading to a single Alexander grading.

For Sections 7 and 9, it will in fact be helpful to have the following algebraic
generalization of Corollary 4.2.

Proposition 4.6. Suppose that L is a link such that

(1) rank.bHFL.L; .A1 C 1; A2; : : : ; An/// D 0;

(2) rank.bHFL.LI .A1; : : : ;An///D1, with x a generator of bHFL.LI .A1; : : : ;An//
and Nx a generator of bHFL.LI .�A1; : : : ;�An//, such that @T x has a non-
trivial component in bHFL.LI .A1 � 1; A2; : : : ; An//;

(3) there exists a generator y of bHFL.LI .1 � A1; �A2; : : : ; �An// such that
h@T y; Nxi ¤ 0.

Then,
rank.bHFL.LI .A1 � 1; A2; : : : ; An/// > 1:

Here, @T denotes the total differential on bCFL.L/. We have stated the proposition
for A1 only for ease of notation, a more general version readily follows by permuting
the ordering of the components ofL. Here, recall that CFL�.L/ can be thought of as a
..A1;A2; : : : ;An/; .j1; j2; : : : ; jn//-graded complex, where the ji gradings are the Ui
gradings, where the action of Ui decreases the ji and Ai gradings by 1 and preserves
the other gradings. Recall that one can view bCFL.L/ as the sub-complex of CFL�.L/
with ji D 0 for i D 1; 2; : : : ; n or alternately as the sub-complex of CFL�.L/ with
.A1; A2; : : : ; An/ fixed, if all Ai are sufficiently negative. Let @�T again denote the
total differential on CFL�.L/ that counts all pseudo-holomorphic disks.

Proof. Consider a reduced model of CFL�.L/, i.e., one such that the grading preserv-
ing component of @�T is trivial. This is permissible because the filtered chain homotopy
type of CFL�.L/ is a link invariant and one can apply a filtered change of basis to
ensure that the grading preserving component of @�T is trivial—see [20, Reduction
Lemma] in the knot case and note that the proof carries through to the link case.
Observe that there is a generator

U1x 2 CFL�.LI .A1 � 1; A2; : : : ; An/; .�1; 0; : : : ; 0//:

Since rank.bHFL.LI .A1 � 1; : : : ; An/// � 1,

rank.CFL�.LI .A1 � 1; : : : ; An/; .0; 0; : : : ; 0/// � 1:
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Suppose towards a contradiction that

rank.bHFL.LI .A1 � 1; : : : ; An/// D 1
so that

CFL�.LI .A1 � 1; : : : ; An/; .0; 0; : : : ; 0//
is rank one with a generator Ny. Observe that by assumption (2) there is a component
of @�T from x to Ny. Note that this property is preserved under filtered chain homotopy.

We claim that there is also a component of @�T from Ny to U1x as a byproduct of
the assumption (3) in the statement of the proposition.

To verify the claim, note that in any fixed multi-Alexander grading .k; k; : : : ; k/,
with k sufficiently negative, CFL�.L/ is given by a filtered chain homotopy equiv-
alent copy of bCFL.L/, with the role of the (positive) Ai gradings in bCFL.L/ is
interchanged with the roles of the (negative) ji gradings in CFL�.LI ¹ai D k for all
Alexander gradings aiº/—see the proof of [36, Proposition 8.1]. Forgetting @�T , the
isomorphism can be given at the level of the underlying vector space by mapping
a generator in multi-Alexander grading CFL�.LI .x1; x1; : : : ; xn/I .0; 0; : : : ; 0// to
CFL�.LI .k; k; : : : ; k/I .k � x1; k � x2; : : : ; k � xn// by

z 7!
Y
1�i�n

U
xi�k
i z:

Indeed, under this isomorphism, in CFL�.L/ the line through ..�A1;�A2; : : : ;�An/,
.0; 0; : : : ; 0// in the (positive) A1 direction is identified with the line through ..k; k;
: : : ; k/, .k � A1; k � A2; : : : ; k � An// in the (negative) j1 direction. In particular,
CFL�.LI .k; k; : : : ; k/, .k � A1 C 1; k � A2; : : : ; k � An// is generated by

U�11

Y
1�i�n

U
Ai�k
i Ny;

while CFL�.LI .k; k; : : : ; k/; .k � A1; k � A2; : : : ; k � An// is generated byY
1�i�n

U
Ai�k
i x:

It follows from condition (3) that there is a component of @�T from

U�11

Y
1�i�n

U
Ai�k
i Ny to

Y
1�i�n

U
Ai�k
i x:

It follows in turn that there is a component of the differential from Ny to U1x, as
desired.

Now, since rank.bHFL.LI .A1 C 1; A2; : : : ; An/// D 0, we have that

rank.CFL�.LI .A1; A2; : : : ; An/; .�1; : : : ; 0/// D 0:
It follows that h.@�T /2x; U1xi ¤ 0, contradicting .@�T /

2 D 0.
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We conclude this section by noting that it is perhaps useful to view Theorem 4.1
in the context of the following more general proposition.

Proposition 4.7. Suppose that L is an n > 1 component non-trivial link in a rational
homology sphere such that

rank.bHFL.L; .x1; x2; : : : ; xn/// D 2mC 1

for some m 2 N. Then
rank.bHFL.L// � 2n C 2m:

For instance, this proposition yields non-trivial lower bounds on the ranks of
fibered links of two or more components—they must have rank at least 2n. Note
that this improves the lower bound rank.bHFL.L// � 2n�1 coming from the spectral
sequence from bHFL.L/ to V n�1.

Proof of Proposition 4.7. Suppose that L is an n > 1 component link non-trivial such
that rank.bHFK.L; .x1; x2; : : : ; xn/// D 2m C 1. For each choice of i , there exist
an odd number of generators with Aj grading xj for every i ¤ j , and Ai ¤ xj ,
since bHFL.L/ must have even rank in each such hyperplane. Recursively, we can
find additional generators for each choice of hyperplane defined by Ai D xi for i in
any subset of ¹1; 2; : : : ; nº. Since each of the prior stages have an odd number of
generators, we obtain an additional odd numbers of generators at each stage, again
since the rank of bHFL.L/ must be even. Thus, we obtain at least an additional 2n � 1
generators.

Note that if L is an n-component link and rank.bHFK.L; A// is odd for some
Alexander grading A, then there is a multi-Alexander grading .A1; A2; : : : ; An/ such
that rank.bHFL.L;A1; A2; : : : ; An// is odd, where A D A1 C A2 C � � � C An whence
it follows that

rank.bHFK.L// � 2n:

5. Detection results for .2 ; 2n/-cables

In this section, we provide detection results for the simplest 2 component cables of
the trefoils and figure eight knot. Some care with coefficients is required.

Theorem 5.1. Link Floer homology with Z2 coefficients detects T .2; 3/2;2n for all n.

Theorem 5.2. Let K be the figure eight knot. Link Floer homology with Z2 coeffi-
cients detects K2;2n for all n.

Each of these results is proven in three cases, where n > 0, n < 0, and nD 0. Only
the proof of the nD 0 cases requires Z2 coefficients. Throughout this section, we will
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use K2;2n to indicate the .2; 2n/-cable of K oriented so that the two-components of
K are oriented in parallel and KA.2;2n/ to indicate the .2; 2n/-cable of K oriented so
that it bounds an annulus. We take F to be Z, Z2, or Q unless otherwise stated.

Lemma 5.3. Suppose that L is a link such that

bHFK.LIZ2/ Š bHFK
�
T .2; 3/e.2;0/IZ2

�
:

Then, L is either isotopic to T .2; 3/e.2;0/ or the disjoint union of an unknot and a knot

K with knot Floer homology given by2

bHFK.K/ Š .Z2/20Œ1�˚ .Z2/3�1Œ0�˚ .Z2/2�2Œ�1�:
Note that this result implies that link Floer homology with Z2 coefficient detects

T .2; 3/.2;0/, since if a link L satisfies

bHFL.L/ Š bHFL.T .2; 3/.2;0//;

then L does not contain an unlinked, unknotted component. This follows from the
fact that for any link L0 and unknot U , the following is true:

bHFL.L0 t U/ D bHFL.L0/˝ .F0 ˚ F�1/;

where F0 ˚ F�1 is supported in multi-Alexander grading 0.
We first give a partial computation of bHFK.T .2; 3/e.2;0/IZ2/.

Lemma 5.4. Let F be Z2, bHFK.T .2; 3/e2;0IF/ is given by either�
F21

2

˚ F2
� 1

2

�
Œ1�˚ �F3

� 1
2

˚ F3
� 3

2

�
Œ0�˚ �F2

� 3
2

˚ F2
� 5

2

�
Œ�1�

or �
F21

2

˚ F2
� 1

2

�
Œ1�˚ �F4

� 1
2

˚ F4
� 3

2

�
Œ0�˚ �F2

� 3
2

˚ F2
� 5

2

�
Œ�1�:

To prove this, we compute

bHFK.T .2; 3/.2;1/IZ2/ and bHFK.T .2; 3/.2;�1/IZ2/
using Hanselman–Watson’s cabling formula in the theory of immersed curves [17],
then apply the skein exact triangle for the knot Floer homology to determine bHFK
.T .2; 3/.2;0/IZ2/, and thereby bHFK.T .2; 3/e.2;0/IZ2/. The reason we use Z2 coef-
ficients is that the immersed curves formulation of bordered Floer homology with
integer coefficients and indeed bordered Floer homology with integer coefficients
itself have not yet been developed.

2Since this article first appeared, Baldwin–Sivek have shown that the only knot with this
knot Floer homology is the mirror of 52 [5].
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Proof of Lemma 5.4. Hanselman–Watson’s cabling formula implies that

bHFK.T .2; 3/.2;1/IF/
Š F0Œ2�˚ .F�1 ˚ F0/Œ1�˚ F�1Œ0�˚ .F�2 ˚ F�3/Œ�1�˚ F�4Œ�2�;

bHFK.T .2; 3/.2;�1/IF/
Š F2Œ2�˚ .F1 ˚ F0/Œ1�˚ .F2�1 ˚ F0/Œ0�˚ .F�2 ˚ F�1/Œ�1�˚ F�2Œ�2�:

We can apply the skein exact triangle from [33, equation (7)] and taking L� to be
T .2; 3/.2;�1/, LC to be T .2; 3/.2;1/ and L0 to be T .2; 3/.2;0/. Thus, we can deduce
that bHFK.T .2; 3/.2;0/; i/ is trivial for i > 2 and

bHFK.T .2; 3/.2;0/; 2/ Š F 3
2
˚ F 1

2
:

To determine bHFK.T .2;3/.2;0/; 1/, we note that it follows immediately from the skein
exact triangle that it is either F 1

2
˚ F

� 1
2

or F21
2

˚ F2
� 1

2

. To exclude the former case,

first note that bHFL.T .2; 3/.2;0// is supported on the lines A2 D A1, A2 D A1 C 1,
A2 D A1 � 1, since T .2; 3/e.2;0/ bounds an annulus. It follows that the component of

bHFL.T .2;3/.2;0//with Alexander gradings satisfyingA1CA2D 2 is .F1˚F0/Œ1;1�,
where Œ1; 1� indicates the multi-Alexander grading. Since T .2; 3/ is fibered, but nei-
ther component of T .2; 3/.2;0/ is braided with respect to the other (since the linking
number is zero), it follows from [28] that the rank of bHFL.T .2; 3/.2;0// is at least four
in each of the maximal Ai gradings (namely, Ai D 1). Thus,

bHFK.T .2; 3/.2;0/; 1/ Š F2
� 1

2

˚ F21
2

;

and indeed,

bHFL.T .2; 3/.2;0/; .1; 0// Š bHFL.T .2; 3/.2;0/I .0; 1// Š F0 ˚ F�1:

To conclude the computation, it suffices to determine bHFK.T .2; 3/.2;0/; 0/ by the
symmetries of link Floer homology. Note again that the skein exact triangle implies
that bHFK.T .2; 3/.2;0/; 0/ is either F

� 1
2
˚ F

� 3
2

or F2
� 1

2

˚ F2
� 3

2

.

It follows that either

bHFK.T .2; 3/e2;0/ Š �F21
2

˚ F2
� 1

2

�
Œ1�˚ �F3

� 1
2

˚ F3
� 3

2

�
Œ0�˚ �F2

� 3
2

˚ F2
� 5

2

�
Œ�1�

or

bHFK.T .2; 3/e2;0/ Š �F21
2

˚ F2
� 1

2

�
Œ1�˚ �F4

� 1
2

˚ F4
� 3

2

�
Œ0�˚ �F2

� 3
2

˚ F2
� 5

2

�
Œ�1�:

We can now proceed to the proof of Lemma 5.3.
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Proof of Lemma 5.3. Suppose that

bHFK.L/ Š bHFK
�
T .2; 3/e.2;0/

�
:

It suffices to show that L bounds an annulus, has linking number 0, and has a trefoil
component.

We first note that L has at most two-components since the maximal Maslov
grading of bHFK.L/ is 1

2
. Since rank.bHFK.L// is even, it follows that L cannot

be a knot, so L is a two-component link. The fact that the linking number is zero
follows from the fact that the Conway polynomial detects the linking number of two-
component links [21]. Since the maximal Alexander grading of bHFK.L/ is 1, either
L bounds an annulus or it is the disjoint union of an unknot and a genus one knot. If
rank.bHFK.L// D 16, then L cannot be a two-component link with a split, unknotted
component as in this case the genus one knot would have to have knot Floer homol-
ogy of even rank, a contradiction. Thus, the genus one knot must have knot Floer
homology of the form

F20 Œ1�˚ F3�1Œ0�˚ F2�2Œ�1�
as required.

Suppose now that L bounds an annulus. Note that a two-component link contain-
ing a knot of genus g must have knot Floer homology containing generators of Maslov
grading which differ by at least 1C 2g. Since the Maslov gradings of bHFK.L/ differ
by at most 3, it follows that each component of L is of genus at most one. Note that
the only link with unknotted components bounding an annulus and of linking number
zero is the two-component unlink, which is of the incorrect Euler characteristic. Thus,
L contains genus one components. To see that each of these components is fibered,
we note that if L has a component K with g.K/ D 1 which is not fibered, then L
contains at least two pairs of generators which differ in Maslov grading by 3. There
are only two such pairs, namely, the pairs of generators of Maslov grading 1

2
and �5

2
.

Since the linking number of L is zero, we see that in link Floer homology the two
Maslov index 0 generators have, without loss of generality, A1 grading equal to 1, so
we have that they are supported in bi-Alexander grading .1; 0/. But since L bounds
an annulus, both components of L are isotopic and we must have two generators of
A2 grading 1, a contradiction. Thus, L has genus one fibered components.

It thus suffices to show these components are neither T .2;�3/ nor the figure eight.
Note that T .2;�3/e.2;0/ is the mirror of T .2; 3/.2;0/; therefore,

bHFK
�
T .2;�3/e.2;0/

� Š �bHFK.T .2; 3/e.2;0//
�� 6Š bHFK.L/:

Similarly, the A.2; 0/ cable of the figure eight is isotopic to the A.2; 0/-cable of the mirror
of the figure eight, so ifL, where the A.2; 0/-cable of the figure eight then its knot Floer
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homology would be isomorphic to its dual, which is not the case. Thus, L is isotopic
to T .2; 3/e.2;0/ as desired.

We now prove a similar result for the .2; 0/ cable of the figure eight knot.

Lemma 5.5. LetK be the figure eight knot. Suppose that bHFL.L/Š bHFL.K2;0;Z2/.
Then, L is isotopic to K2;0.

As before, we begin with a partial computation of bHFK.K2;0/.

Lemma 5.6. Let F be Z2 and K be the figure eight knot. bHFK.K.2;0/; i IF/ is 0 for
i > 2, F 3

2
˚ F 5

2
for i D 2, F23

2

˚ F21
2

for i D 1, and .F 1
2
˚ F

� 1
2
/n for i D 0 and some

n � 3.

Proof. Hanselman–Watson’s cabling formula for knot Floer homology in terms of
immersed curves [17] shows that

bHFK.K2;1/ Š bHFK.K2;�1/

Š F1Œ2�˚ .F1 ˚ F0/Œ1�˚ F30 Œ0�˚ .F�2 ˚ F�1/Œ�1�˚ F�3Œ�2�:

Again, we apply the skein exact triangle from [33, equation (7)] with

L0 D K2;0; LC D K2;1; L� D K2;1:

This immediately implies that

bHFK.K2;0; i/ Š 0 for ji j > 2 and bHFK.K2;0; 2/ Š F 3
2
˚ F 5

2
:

Indeed, we see that bHFK.K2;0; 1/ is either F23
2

˚ F21
2

or F 3
2
˚ F 1

2
. To rule out the

latter case, we apply similar tactics as in after stating Lemma 5.3. In brief, note that
Ke2;0 bounds an annulus so that bHFL.K2;0/ is supported on the lines A2 D A1, A2 D
A1 ˙ 1. Thus, since bHFL.K2;0/ must be of even rank in each Ai grading, and in the
gradingsAi D 1, the rank of the link Floer homology ofLmust be at least 4 sinceL is
not fibered, the case that bHFK.K2;0; 1/ Š F 3

2
˚ F 1

2
is excluded. While unnecessary,

we note that
bHFK.K2;0; 0/ Š

�
F 1

2
˚ F

� 1
2

�n
for some 0� n� 3. In fact, n� 2, as else bHFK.K2;0/ cannot admit a spectral sequence
to bHFL.K/˝ V .

Proof of Lemma 5.5. Suppose that L is as in the statement of the lemma. Then, L is a
two-component link with linking number 0. Note that upon reversing the orientation
of a component, L bounds a surface of Euler characteristic 0. Thus, either L consists
of the disjoint union of an unknot and a genus one knot or L bounds an annulus. The
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former case is excluded since bHFL.L/ is not supported along a singleAi D 0 grading.
Thus, L bounds an annulus and is therefore the .2; 0/-cable of some knot K.

To see that K is the figure eight knot, note that K can be of genus at most one
since the maximal Ai grading is 1 for each i . Indeed, it is plainly not the case that
bHFL.K2;0/Š bHFL.T .2; 0//, soK must be a genus one knot. To see thatK is fibered,
note that the Maslov gradings of theA1D 1 part of bHFL.L/ is given by F0˚ F2˚ F21
while theA1D�1 part is given by F�1˚F2�2˚F�3. It follows that the Maslov index
2 generator, as well as the Maslov index�3 generator cannot persist under the spectral
sequence to bHFL.L1/, where L1 is the component of L corresponding to A1. Thus,
bHFL.L1/ is of rank one in the top Alexander grading and L1 is fibered [16]. Thus, L
is a .2; 0/-cable of a trefoil or the figure eight. But the .2; 0/-cables of the trefoils have
distinct knot Floer homology, as shown previously. Thus, L is K2;0 as desired.

To prove Theorem 5.1 and Theorem 5.2, we first show that if the link Floer homol-
ogy of a link satisfies certain properties, then the link is a .2; 2n/ cable of a trefoil or
the figure eight knot. Then, we show that the link Floer homology of each of these
three links satisfies these properties for the given n.

Lemma 5.7. Let L be a two-component link with linking number n > 1 such that

(1) bHFL.L/ is of rank 2 in the maximal non-zero A1 or A2 grading;

(2) The link Floer homology polytope has a vertex at multi-Alexander grading
.1C n

2
; 1C n

2
/;

(3) bHFL.L/ has support on the lines A2 D A1, A2 D A1 C 1, A2 D A1 � 1.

Then, L is isotopic to K2;2n, where K is a trefoil or the figure eight knot.

Proof of Lemma 5.7. Suppose that L is as in the hypotheses of the theorem. Con-
dition 3 implies that L bounds an annulus upon reversing the orientation of either
component—it bounds an Euler characteristic zero surface with two boundary com-
ponents, neither of which is a disk. Since the maximal Alexander grading is 2C n, it
follows that the maximal Ai gradings are 1C n

2
.

Since
g.Li /C n

2
� max

®
Ai W bHFL.L; .A1; A2// ¤ 0

¯
;

it follows that g.Li / � 1 for each i . Indeed since, bHFL.L/ is of rank 2 in A1 grading
n
2
C 1, Li is genus one and fibered or genus zero, and hence an unknot, a trefoil or

the figure eight knot. It follows that L Š K2;2n, where K is the unknot, a trefoil, or
the figure eight knot. .2; 2n/-cables of the unknot are the torus links T .2; 2n/ which
do not satisfy property 2. Thus, L is a .2; 2n/ cable of a trefoil knot or the figure eight
knot, as desired.
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To apply Lemma 5.7, we need to show that bHFL.K2;2n/ satisfies the conditions
of the hypothesis of Lemma 5.7 for K a trefoil or figure eight knot. The easiest way
to proceed is via the following remark.

Remark 5.8. Rudolph shows that the Kn;m can be written as a Murasugi sum of
Kn;sign.m/, which is fibered by a result of Stallings [43], and T .n; m/ along minimal
genus Seifert surfaces [40]. Note that Rudolph’s result is only stated for n,m coprime,
but the proof works for arbitrary n, m. Results of Gabai show that Murasugi sums of
fiber surfaces are fibered, and that Murasugi sums of minimal genus Seifert surfaces
are minimal genus Seifert surfaces [15]. It follows that .2; 2n/ cables of genus one
fibered knots are fibered and of genus n, that is Euler characteristic �2n.

If one wishes to only use Rudolph’s stated result, for knots, one can alternately
proceed via the following lemma.

Lemma 5.9. Let K be a genus one fibered knot. For n � 1, K2;2n is fibered and
�.K2;2n/ D �2n.

Proof of Lemma 5.9. Note that, for n > 0, K2;2nC1 is the Murasugi sum of K2;1 and
T .2; 2nC 1/ [29, 40] along their fiber surfaces, which are minimal genus. Let g be a
genus one fibered knot. It follows from a result of Gabai [15] that K2;2nC1 is fibered
and that g.K2;2nC1/D 2C n. From here, using the Skein exact triangle for knot Floer
homology, we see that

2 � �.K2;2n/
2

D 1C n

for all n � 1—that is, �.K2;2n/ D �2n—and that

rank.bHFK.K2;2n; 1C n// D 1

so that K2;2n is fibered, as desired.

It follows that conditions (1), (2), and (3) of Lemma 5.7 hold for .2; 2n/ cables of
the trefoils, and figure eight. To see that condition 3 holds, note that .2; 2n/ cables of
the three links bound an annuli under reversing the orientation of one of the compo-
nents.

We can now proceed to the detection results.

Proof of Theorem 5.1. Suppose that L is as in the statement of the theorem. We pro-
ceed by cases: when n D 0, n > 0 and when n < 0. The n D 0 case was dealt with in
Lemma 5.3.

Suppose now that n > 0. We first show that bHFL.T .2; 3/2;2n/ satisfies the con-
ditions in the hypothesis of Lemma 5.7. Observe that, for n � 1, each component
of T .2; 3/2;2n is a braid in the complement of the other, so bHFL.T .2; 3/2;2n/ must
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be rank two in the maximal Ai grading, by braid detection [28, Proposition 1], so
condition (1) of Lemma 5.7 holds. By Lemma 5.9, the maximal Alexander grad-
ing of bHFK.L/ is 2C n. T .2;�3/2;2nC1 is fibered by Lemma 5.9. Therefore, since
bHFL.T .2;�3/2;2n/ is rank one in the maximal Alexander grading, and must be sym-
metric under interchanging the components, it follows that the link Floer homology
polytope of L has a vertex at .1C n

2
; 1C n

2
/ so that condition 2 holds. We note that

the two generators of the top Ai grading of bHFL.T .2;�3/2;2n/ must be of Maslov
gradings 0 and �1.

Suppose now that bHFL.L/ Š bHFL.T .2; 3/2;2n/ for some n � 1. Since link Floer
homology detects the linking number of two-component links [21], it follows that the
components of L have linking number n. Lemma 5.7 implies that L is the .2; 2n/
cable of a trefoil or the figure eight. To see that L is the cable of T .2; 3/, observe that
the bHFL.L/ has a Maslov index 0 generator with A1 grading 1C n

2
which persists

under the spectral sequence to bHFL.Li /, whence Li is T .2; 3/.
We now proceed to the case n < 0; i.e., we show that Link Floer homology detects

T .2;�3/2;2n for n > 0.
Consider bHFL.T .2;�3/2;2n/. Observe that, for n � 1, each component of L is a

braid in the complement of the other, so bHFL.L/must be rank two in the maximal Ai
grading, by braid detection [28], so condition (1) of Lemma 5.7 holds. By Lemma 5.9,
the maximal Alexander grading of bHFK.L/ is 2C n. Since T .2;�3/2;2nC1 is fibered,
and bHFL.T .2;�3/2;2nC1/ must be symmetric under interchanging the components,
it follows that the link Floer homology polytope of L has a vertex at .1C n

2
; 1C n

2
/, so

that condition (2) of Lemma 8.7 holds. Condition 3 holds since T .2;�3/2;2n bounds
an annulus upon reversing the orientation of a component. Note that the two genera-
tors of the top Ai grading of bHFL.T .2;�3/2;2n/must be of Maslov gradings 1 and 2.

Suppose now that bHFL.L/ Š bHFL.T .2;�3/2;2n/. Lemma 5.7 implies that L is
a .2; 2n/ cable of a trefoil or the figure eight knot. Since the two generators of the
top Ai grading of bHFL.L/ must be of Maslov gradings 1 and 2, it follows that each
component is T .2;�3/ and we have the desired result.

The proof of Theorem 5.2 is again similar.

Proof of Theorem 5.2. The proof follows the proof of Theorem 5.1 verbatim, aside
from the note that the top Ai generators must be of Maslov indices 0 and 1, respec-
tively, for n � 0.

6. E2 collapsed chain complexes

In this section, we prepare the ground for our detection results for T .2;8/ and T .2;10/
in subsequent sections by proving a purely algebraic result for E2 collapsed chain
complexes.
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Figure 3. Examples of possible summands of an E2-collapsed chain complex.

We will rely on a structure theorem for E2-collapsed chain complexes over Q,
i.e., Z˚ Z graded finitely generated chain complexes with coefficients in Q and dif-
ferentials of length at most one. The Z2 coefficient version is provided in [36, Section
12]; see [38, Lemma 7] for a similar result. In particular, Ozsváth–Szabó note that
each E2-collapsed spectral sequences over Z2 split as the direct sum of complexes of
one of five forms, Bd ; V ld ; H

l
d
; X l

d
, and Y l

d
. These are shown in Figure 3. For the Q

coefficient version, the only necessary modification is that the arrows correspond to
maps 1 W Q! Q, save for the top arrow of the Bd complex, which is given by �1.

Proposition 6.1. Suppose that .C; @/ is a bi-filteredE2 collapsed chain complex with
coefficients in Q. Then, .C; @/ is bi-filtered chain homotopy equivalent to a complex
which decomposes as a direct sum of copies of chain complexes of the type

Bd Œi; j �˚ V ld Œi; j �; H l
d Œi; j �; X ld Œi; j �; Y ld Œi; j �:
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Here and henceforth, Œi; j � indicates a shift up in A1 grading by i and a shift up in
A2 grading by j . Since for a two-component ı-thin link L bCFL.L/ is E2 collapsed,
this result is of great utility. Indeed, the filtered chain homotopy types of the compo-
nents of L yield significant restraints on the filtered chain homotopy type of bCFL.L/.
For instance, since the full filtered bCFL complex has homology F0˚ F�1, we see that
bCFL.L/ has a summand X l0 or Y l0 and a summand X l�1 or Y l�1 and no other sum-
mands of the form X l

d
; Y l
d

. Similarly, it is readily seen that the chain homotopy type
of bCFL.L1/ determines the V l

d
summands, while bCFL.L2/ determines the H l

d
sum-

mands. Specifically, if there are generators x; y 2 bCFL.L1/, with h@cCFL.L1/
x; yi ¤ 0

then we must have a summand of bCFL.L/ of the form V
A.x/�A.y/

M.x/
, as no other sum-

mand induces the correct differential on bCFL.L1/.

The proof of Proposition 6.1 is entirely elementary.

Proof of Proposition 6.1. We prove this by showing that .C; @/ admits a graded basis
¹viº for C such that @vj is either trivial, a single generator in ¹viº \ C.x � 1; y/˚
C.x;y � 1/, or the sum of a generator in ¹viº \C.x;y � 1/ and a generator in ¹viº \
C.x � 1; y/. For the purposes of this proof, we call a chain complex with a choice of
such a basis simplified. The result then follows.

By a bi-filtered version of the reduction lemma [19, Lemma 4.1], we can assume
that the grading preserving part of @ is trivial.

Indeed, by repeatedly changing basis, we may assume that each summand C.x;y/
splits as a direct sum A.x; y/ ˚ B.x; y/ ˚ D.x; y/, where @2jA.x;y/ W A.x; y/ !
B.x; y � 1/ is represented by the identity matrix under a choice of basis and @2 is
trivial when restricted to B.x; y/˚D.x; y/.

We now proceed to produce a basis for which
L
x;y C.x;y/ is simplified. Starting

with the basis as above, we proceed by a double induction: we assume the subcom-
plex

L
.x;y/Wx<n C.x; y/ is simplified and then in turn assume that each summandL

x<n;yDm C.x; y/ is simplified then proceeding by induction on n then m.
Consider z a basis element in C.n;m/. Suppose that @1.z/D

P
qiai C

P
rj bj CP

skdk , where ai are basis elements forA.n� 1;m/, bj are basis elements forB.n�
1;m/ and dk are basis elements for D.n � 1;m/ and qi ; rj ; sk 2 Q.

Suppose that rj D 0 for all j . Then, we can change basis for A.n � 1; m/ ˚
D.n� 1;m/˚B.n� 1;m� 1/ so that @1z D q for q a basis element in A.n� 1;m/,
as desired.

Likewise, if qi D 0 for all i , we can change basis forB.n� 1;m/˚D.n� 1;m/˚
A.n � 1;mC 1/ so that @1z D q for q a basis element in B.n � 1;m/, as desired.

In general, we may assume after making a change of basis for A.n � 1; m/ ˚
D.n � 1; m/ ˚ B.n � 1; m � 1/, and subsequently B.n � 1; m/ ˚ D.n � 1; m/ ˚
A.n � 1; mC 1/ that @z D �"1a C "2b with a a basis vector in A.n; m/, b a basis
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vector in B.n; m/, "1; "2 2 ¹0; 1º. If either "1 or "2 is non-zero, then we are done.
Suppose that they are both 1. Note that in order that @21 ¤ 0, we must have that z is
not in the image of @1. Moreover, in order that @2 D 0, we must have that z 2A.n;m/.
Indeed, by induction, we have that @1.a/ ¤ @1.b/ so that in fact @1.a/ D @1.b/ D 0
in order that @2 D 0. Consider the basis in which we exchange ¹aC b; bº for ¹a; bº.
Applying this argument for the remaining basis elements of C.n; m/ completes the
proof.

7. Knot Floer homology detects T.2; 8/, T.2; 10/

In this section, we prove the following detection results.

Theorem 7.1. Knot Floer homology detects T .2; 8/.

Theorem 7.2. Knot Floer homology detects T .2; 10/.

From here, the following corollary follows immediately from the work in [11].

Corollary 7.3. Annular Khovanov homology detects the closures of the following
braids: �1�2 � � � �7 and �1�2 � � � �9. Here, �i are the standard Artin generators of the
braid group.

Here, Annular Khovanov homology is a combinatorial invariant of links in a thick-
ened annulus. For details, we refer the reader to [11].

For the reader’s convenience, first, we recall that

bHFK.T .2; 2n/; i/ Š

8̂̂<̂
:̂

F 1C2i�2n
2

for i D ˙n;
F21C2i�2n

2

for � n < i < n;
0 otherwise:

Here, F can be Q, Z, or Z2.
We start by showing that in general if bHFK.L/Š bHFK.T .2; 2n//, thenL consists

of two unknotted components and bCFL.L/ is of an especially simple form.

Lemma 7.4. Suppose that bHFK.LIF/Š bHFK.T .2; 2n/IF/. Then, .bCFL.L/; @/ con-
sists of Bd summands and a single

Y 00

�
n

2
;
n

2

�
˚ Y 1�1

�
n � 1
2

;
n � 1
2

�
summand, and L has unknotted components.

Here, F is either Q or Z2.
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Proof of Lemma 7.4. Let L be as in the lemma, and m be the number of components
of L. We first show that m D 2. To see this, note that the maximal Maslov grad-
ing of a generator of bHFK.L/ is 1

2
, so since bHFK.L/ admits a spectral sequence tocHF.#m�1S1 � S2/, L can have at most two-components. L then has exactly 2 com-

ponents since the Maslov grading of bHFK.L/ is ZC m�1
2

valued.
Let L1 and L2 be the two-components of L. It follows that there is a unique

Maslov grading 0 generator. Consider bHFL.L/. Since the linking number is n and
the Alexander grading of the Maslov index 0 generator is n, it follows that there is
a summand Y 00 Œ

n
2
; n
2
� and since there are two Maslov index �1 generators, there is a

summand Y 1�1Œ
n�1
2
; n�1
2
�. As observed in the proof of [36, Theorem 12.1], bHFL.L/

consists of pairs of summands

V ld .x; y/˚ V ld�1.x; y � 1/; H l
d .x; y/˚H l

d�1.x; y � 1/;
Y l0 .x; y/˚ Y l�1�1 .x C 1; y C 1/; X l0.x; y/˚X l�1�1 .x; y/;

as well as a collection of copies of Bd . Note that for the case at hand the rank in each
Alexander grading is at most two, so we have that the rest of the complex is given by
summands of the form Bd or V 1

d
Œx; y�˚ V 1

d�1
Œx; y � 1� or H 1

d
Œx; y�˚H 1

d�1
Œx �

1; y�. Indeed, we readily see that d is even.
Suppose that L1 is not unknotted. Consider the V 1

d
Œx; y�˚ V 1

d�1
Œx; y � 1� sum-

mands with maximal x. Note that x > n
2

. Amongst these, consider the summands
with minimal d . It follows that there is a generator in bHFK.L1/ of minimal Alexan-
der grading with Maslov grading d � 2.x � n

2
/. Note that this is an even number. But

this is a contradiction, since if there is a generator of even Maslov index in A1 grading
n
2
� x which persists under the spectral sequence to bHFK.L1/˝ V , then there must

be a generator of odd Maslov index in A1 grading n
2
� x � 1, since the summands

of bHFL.L/ that persist under the spectral sequence to bHFK.L1/˝ V are of the form
V 1
d
Œx; y�˚ V 1

d�1
Œx; y � 1� with d even.

Thus, there are no V 1
d
Œx; y�˚ V 1

d�1
Œx; y � 1� summands. A similar proof shows

that there are no H 1
d
Œx; y�˚H 1

d�1
Œx � 1; y� summands. Thus, the remaining sum-

mands are all of the form Bd and each component of L is unknotted, as desired.

We can now prove the two knot Floer homology detection results.

Proof of Theorem 7.1. Suppose that bHFK.L/ Š bHFK.T .2; 8//. Lemma 7.4 implies
that L is a two-component link with unknotted components and indeed determines
the complex up to a choice of x in a summand B�4Œy;�y�, by the symmetry of link
Floer homology. Also since the link Floer homology is of rank 2 in at least one of the
maximal Ai gradings, by [28, Proposition 1], it follows that at least one component
is a braid axis, and therefore that the maximal Ai grading is exactly 2. It follows that
x 2 ¹1; 0;�1º. The y D 1 case can be obstructed using Proposition 4.6. Specifically,
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observe that y can be taken to be the generator of multi-Alexander grading .2;�1/.
The y D �1 can be obstructed similarly. The result then follows from the fact that
Link Floer homology detects T .2; 8/ [11, Theorem 3.2].

The proof of Theorem 7.2 is virtually identical.

Proof of Theorem 7.2. Suppose that bHFK.L/ Š bHFK.T .2; 10//. Lemma 7.4 implies
that L is a two-component link with unknotted components and indeed determines
the complex up to a choice of y in a summand B�4Œy C 1

2
; 1
2
� y�, by the symmetry

of link Floer homology. Since the link Floer homology is of rank 2 in at least one of
the maximal Ai gradings, it follows that at least one component is a braid axis, and
therefore that the maximal Ai grading is exactly 2. It follows that y 2 ¹1; 0;�1º. The
y D 1 case can be obstructed using Proposition 4.6. Specifically, observe that y can
be taken to be the generator of multi-Alexander grading .5

2
;�1

2
/. The y D �1 can be

obstructed similarly. The result then follows from the fact that Link Floer homology
detects T .2; 10/ [11, Theorem 3.2].

8. Rank detection results for knot Floer homology

In this section, we show that there are only a small number of links with knot Floer
homology of low rank. In particular, we show the following sequence of theorems.

Theorem 8.1. If rank.bHFK.L// D 4, then L is the Hopf link or the three-component
unlink.

Theorem 8.2. Suppose that L is a link with rank.bHFL.L//D 6. Then, L is a disjoint
union of a trefoil and an unknot.

Theorem 8.3. The only links L with rank.bHFL.L// D 8 are T .2; 4/, T .2;�4/, the
four-component unlink, and the disjoint union of a Hopf link and an unknot.

Indeed, this yields a complete list of links with at least two-components of rank at
most eight, in combination with the following lemma.

Lemma 8.4. Suppose that L is an nC 1 component link with

rank.bHFK.L// D 2n:

Then, L is an unlink.

We can also provide a partial classification of links with knot Floer homology of
rank ten.

Proposition 8.5. There is no three-component link with rank.bHFK.L// D 10.
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By similar methods, we can show a detection result for knot Floer homology.

Theorem 8.6. LetL0 be T .2;3/with a meridian. Suppose that bHFK.L/Š bHFK.L0/.
Then, L is isotopic to L0.

Here, we take the linking number of the right-handed trefoil and its meridian to be
one. Again, this result should be compared to the corresponding link Floer homology
detection result in [11].

The proofs of Theorems 8.1, 8.2, 8.3 and Proposition 8.5 each essentially follow
from case analysis in which we use algebraic and geometric properties of link Floer
homology to exclude the unwanted cases, as well as the detection results for knot
Floer homology found in [11]. Throughout this section, we take F to be Q or Z2.

We first prove Lemma 8.4, as it is useful in proving the other theorems.

We will find the following characterization of unlinks useful.

Lemma 8.7 (Ni [30]). Suppose that bHFK.L/ is supported in a single Alexander grad-
ing. Then, L is an unlink.

Proof of Lemma 8.7. Observe that if bHFK.L/ is supported in a single Alexander grad-
ing, then that grading must be zero, by the symmetry of bHFK.L/. It follows that

0 D n �
mX
iD1

.2 � 2g � ni /;

where n is the number of components of L, and the surface that L bounds has m
components, the i th of which has ni boundary components. Thus, 0D n�mCPi gi .
But n � m, so

0 D n �mC
mX
iD1

gi �
mX
iD1

gi � 0:

Thus,
Pm
iD1 gi D 0 and n D m. It follows that L bounds n disks, whence L is an

unlink with n-components.

Throughout this section, we use V to denote the rank two vector space of multi-
Alexander grading 0, with one generator of Maslov index 0 and the other �1.

Proof of Lemma 8.4. We proceed by induction. For the base, nD 0, the result follows
from the fact that knots of genus at least one have rank at least two, since they have
rank at least one in Alexander gradings g and�g, where g is the genus of the knot. For
the inductive step, note that ifL is an nC 1 component link with rank.bHFK.L//D 2n
then for any component Li of L, L � Li is a link with rank.bHFK.L � Li // D 2n�1.
By inductive hypothesisL�Li is the n-component unlink. It follows that the support
of bHFL.L/ is contained in the line defined by Aj D 0 for j ¤ i . But i is arbitrary,
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so bHFL.L/ is supported in multi-Alexander grading 0, and the result follows from
Lemma 8.7.

We now prove Theorem 8.1.

Proof of Theorem 8.1. Let L be an n-component link with rank.bHFK.L//D 4. Since
bHFK.L/ admits a spectral sequence to cHF.#n�1S1 � S2/, it follows that n � 3.

Indeed, since rank.bHFK.L// is even, it follows that L has either two or three-com-
ponents. We evaluate each case separately.

If L has three-components, then L is the three-component unlink by Lemma 8.4.
It therefore remains only to consider the case that nD 2. Let g be the maximal Alexan-
der grading of bHFK.L/. We consider the following three cases: rank.bHFK.L/.g// is
either four, two or one, in which case the link is fibered by [31]:

(1) rank.bHFK.L/.g// D 4. In this case, g D 0, whence bHFK.L/ does not admit
a spectral sequence to cHF.S1 � S2/.

(2) rank.bHFK.L/.g// D 2. In this case, we see that

bHFK.L/ Š .Fm1
˚ Fm2

/Œg�˚ .Fm1�2g ˚ Fm2�2g/Œ�g�:

Observe that g > 0. Consider the spectral sequence from bHFK.L/ to cHF.S1 �
S2/. There must be exactly one generator with non-trivial differential. Without
loss of generality, we may then take m1 � 1 D m2 � 2g, but in that case, we
cannot have that the remaining generators from the set ¹1

2
; �1
2
º, a contradic-

tion.

(3) rank.bHFK.L/.g//D 1. Observe that g � 1. Let Œx;g� x� be the bi-Alexander
grading of the contact class in bHFL.L/.
If g > 1, then Theorem 4.1 implies that rank.bHFK.L// � 6. Thus, g D 1, and

bHFL.L/

Š Fm

�
1

2
;
1

2

�
˚ Fm�1

�
� 1
2
;
1

2

�
˚ Fm�1

�
1

2
;�1
2

�
˚ Fm�2

�
� 1
2
;�1
2

�
:

Since bHFL.L/ admits a spectral sequence to V , it follows that m 2 ¹0; 1º.
These two cases correspond to the two oriented link types of T .2; 2/, whose
link Floer homology is known to detect per [3].

We now prove Theorem 8.2, proceeding with a method different from the rank
four case: we first analyze the case that L is fibered under some orientation, and the
remaining cases separately.

Lemma 8.8. There is no fibered link L such that rank.bHFK.L// D 6.
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Proof of Lemma 8.8. Suppose that L is an n-component fibered link with

rank.bHFK.L// D 6:

Since rank.bHFL.L// is even, L cannot be a knot. Moreover, L can have at most 3
components, since bHFL.L/ admits a spectral sequence to cHF.#n�1S1 � S2/.

IfL has three-components, then sinceL is fibered, the maximal Euler characteris-
tic Seifert surface forL is connected, whence �.L/��1, and the maximal Alexander
grading in which bHFK.L/ has support is at least 2. By Theorem 4.1, the next to top
Alexander grading is of rank three, whence bHFK.L/ is of rank at least eight, a con-
tradiction.

Thus,L has two-components. Again, asL is fibered, the maximal Euler character-
istic Seifert surface forL is connected, whence �.L/� 0, and the maximal Alexander
grading, g, in which bHFK.L/ has support is at least 1.

If g D 1, then L bounds an annulus, and hence, L is a .2; 2n/-cable. Note that
each component of L has knot Floer homology of rank at most four and is therefore
an unknot or a trefoil. None of the links T .2; 2n/ has knot Floer homology of rank 6,
while if L is the 2-cable of a trefoil, we can see that the linking number of L must be
zero since the spectral sequence to either component must be trivial, since

rank.bHFK.L// D rank.bHFK.T .2;˙3/˝ V //:

However, we can see that in the top A1 or A2 grading the link Floer homology is of
rank 2 whence at least one component is braided about the other—contradicting the
fact that the linking number is zero—orL is a split link, which is a contradiction since
split links are not fibered.

Suppose now that g > 1. Let Œx; g � x� be the bi-Alexander grading of the top
Alexander grading generator. Lemma 4.4 implies that the complex is given by

FmŒx; g � x�˚ Fm�1Œx � 1; g � x�˚ Fm�1Œx; g � x � 1�˚ Fm�2g Œ�x; x � g�
˚ Fm�2gC1Œ�x C 1; x � g�˚ Fm�2gC1Œ�x; x � g C 1�:

To ensure that each Alexander grading is of even rank, we must have that gD
2; x D 1, i.e., the complex is

FmŒ1; 1�˚ Fm�1Œ1; 0�˚ Fm�1Œ0; 1�˚ Fm�4Œ�1;�1�˚ Fm�3Œ�1; 0�˚ Fm�3Œ0;�1�:

By the symmetry of bHFL.L/, we can see that the link obtained by reversing the
orientation of one of the complements bounds an annulus, or the disjoint union of
a disk and a punctured torus. Since split links cannot be fibered, the latter option is
impossible.
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Suppose that L bounds an annulus. Again, since there is no torus link T .2; 2n/ of
rank 6, L must have trefoil components. Since the spectral sequence corresponding
to either component is trivial, it follows that the linking number is zero. But from
the complex, we can see that either L is split—which is again impossible since we
are assuming L is fibered—or the components are exchangeably braided by braid
detection [28], a contradiction.

Having eliminated the case that L is fibered, we can proceed to the remaining
cases.

Proof of Theorem 8.2. Let L be an n-component link with link Floer homology of
rank 6. Lemma 8.8 implies that L is not fibered under any orientation. The fact that

2n�1 � rank.bHFK.L//

implies that L has at most three-components. Since rank.bHFK.L// is even, it follows
that L has two or three-components.

Consider the Link Floer homology polytope of L. Observe that it is contained in
the polytope defined by

nX
jD1

Aj D ˙gi

for each gi , where gi is maximal Alexander grading of bHFK.L/ under some orienta-
tion of L.

Lemma 8.7, together with the fact that there is no unlink with knot Floer homology
of rank 6, implies that we may take gj > 0 for all i .

Suppose that bHFL.L/ has support at a vertex p D .p1; p2; : : : ; pn/ of the link
Floer polytope. Since there exists an Alexander grading Ai for which the support
of bHFL.L/ in the plane Ai D pi is exactly p, it follows that the spectral sequence
from bHFL.L/ to bHFL.Li / ˝ V n�1 is trivial. Thus, the rank of 2HFL.L/ at p is at
least 2n�1. Since the polytope is non-degenerate, the symmetry properties of bHFL.L/
implies that 2n � 6, whence n D 2. The linking number is zero, as the range of the
Alexander gradings cannot change under the spectral sequence to the relevant compo-
nent, because of symmetry properties of knot Floer homology of knots. The symmetry
of bHFL.L/ implies that the rank at p of the Link Floer homology is four so that L is
a split link—and the only such link with link is the disjoint union of an unknot and a
trefoil—or Li is a braid axis, which is impossible since the linking number of Li and
the other component is zero.

It thus remains only to consider the case that bHFL.L/ does not have support at
any of the vertices. Since L is not fibered, each face of the polytope must have at least
two generators. IfL has two-components, then it must have at least four faces, each of
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which has two generators in its interior, a contradiction. If L has three-components,
notice that the polytope has a collection of four faces that meet only at vertices. Since
the polytope does not have support at the vertices, it follows that rank.bHFL.L// � 8,
a contradiction.

For the rank eight case, we proceed as in the rank six case, dealing with fibered
links first and the remaining cases subsequently.

Proposition 8.9. Suppose thatL is fibered and rank.bHFK.L//D8. Then,LŠT .2; 4/
or T .2;�4/.
Proof. Let L be a fibered link with link Floer homology of rank eight. Since bHFK.L/
admits a spectral sequence to cHF.#n�1S1 � S2/, where n is the number of compo-
nents of L, it follows that n has at most four-components. Indeed, L cannot be a
knot since rank.bHFK.L// is even. Suppose that L has four-components. Then, by
Lemma 8.4, L must be a four-component unlink, which is not fibered.

Suppose that L has three-components. Since L is fibered, the minimal genus
Seifert surface forL is the fiber surface, which is connected. It follows that the highest
Alexander grading, g, in which bHFK.L/ has supported is at least 2. By Lemma 4.4,
rank.bHFK.L/.g � 1// � 3. Thus,

bHFK.L/ Š FmŒg�˚ F3m�1Œg � 1�˚ F3mC1�2g Œ1 � g�˚ Fm�2g Œ�g�;

where m 2 Z. It follows that the Alexander polynomial of this link does not evaluate
to zero on 1, a contradiction.

Hence, L is a two-component link. Then, as previously, the maximal Alexander
grading, g, of bHFK.L/ is at least one. Suppose that g D 1. Then, rank.bHFK.LI0//D
6. Such a complex clearly does not admit a spectral sequence to cHF.S1 � S2/, a con-
tradiction. Thus, g � 2. Consider bHFL.L/. Suppose that the top Alexander grading
generator is in multi-Alexander grading .x;g� x/ and of Maslov indexm. Lemma 4.4
implies that there are generators in Alexander gradings .x�1; g�x/, .x; g�x�1/
both of Maslov index m � 1, while symmetry implies that there are generators in
multi-Alexander grading .�x; x � g/ of Maslov index m � 2g as well as in bi-
Alexander gradings .1� x;x � g/ and .�x;gC 1� x/ of Maslov indexmC 1� 2g.
Since g � 2, it follows that all of these generators are distinct. To ensure that the
complex is even rank in each Ai D k grading, we require that there are generators in
multi-Alexander gradings .x � 1;g � x � 1/ and .1� x;xC 1� g/. Observe that the
symmetry properties of link Floer homology, together with the existence of the spec-
tral sequences to complexes arising as tensor products with V , imply that the Maslov
gradings of these generators are m � 2 and mC 2 � 2g, respectively.

Observe that each component of L has rank at most four, whence each component
is an unknot or a trefoil.
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Without loss of generality, after relabeling, we may take 2x � g. Suppose that
.x; g/ 62 ¹.3

2
; 2/; .1; 2/º. Then, the chain complex splits, as the sum of two squares,

and each component is an unknot, since there do not exist three consecutive Alexander
gradings containing generators of the correct Maslov indices to have a trefoil compo-
nent. To ensure the spectral sequence from bHFK.L/ to bHFK.L1/˝ V , we must add
three horizontal arrows, meaning that one of the squares gets at least two. Correspond-
ingly, we must add three vertical arrows, and to insure that @2 D 0, we must then have
that the two arrows are added to the square with two horizontal arrows. This means
that the upper right corner, or lower left corner of one of the squares persists under
both spectral sequences and hence must be on the diagonal, as its coordinates are then
given by . `k.L1;L2/

2
; `k.L1;L2/

2
/. Reversing the orientation of a component, we see that

L bounds an Euler characteristic zero surface, that is, either an annulus or the disjoint
union of a trefoil an unknot. Since fibered links cannot be split, L bounds an annulus,
and since each component is unknotted, it follows that L is T .2; 2n/ for some n. The
only n for which rank.bHFK.T .2; 2n/// D 8 are n D ˙2.

Suppose that .x; g/ D .1; 2/. Reversing the orientation of a component, yields a
link that bounds an annulus (or the disjoint union of a punctured torus and a disk, but
such a link is split and therefore not fibered) whence L is a 2-cable link. L cannot
be the 2-cable of a trefoil, as we know that the linking number is 0, since the span
of each Ai grading is 3, but the rank of bHFL.L/ in the top Alexander A1 grading
is 2, telling us that L is either split or each component is a braid axis, which would
contradict the fact that L is fibered. L cannot be split since split links are not fibered.
IfL is a .2; 2n/-cable of the unknot, thenL is a torus link T .2;2n/ for some n, but the
only such torus links with link Floer homology of rank 8 are T .2; 4/ and T .2;�4/, as
required.

Suppose that .x; g/D .3
2
; 2/. It can be quickly checked that this complex does not

admit the requisite spectral sequences, irrespective of whether the remaining compo-
nent is a trefoil or an unknot. Specifically, it can readily be seen that there cannot be
a component of the differential from a generator in A1 grading 1

2
to one in lower A1

grading, as else the generators that persist under the spectral sequence to bHFL.L2/
do not have admissible Maslov gradings. Thus, the complex splits as two squares and
again must be located on the diagonal, a contradiction.

Proof of Theorem 8.3. By the previous lemma, it suffices to classify links that are not
fibered under any orientation and with link Floer homology of rank eight. Suppose that
L is such a link, with n-components. Since rank.bHFK.L// � 2n�1 and L is even, L
has either two, three or four-components. If L has four-components, then Lemma 8.4
implies that L is an unlink. We deal with the two remaining cases separately:

(1) L has two-components. Consider bHFL.L/. Since L is not fibered under any
orientation, the link Floer polytope of L is a subset of the polytope with boundaries



F. Binns and S. Dey 34

a1 C a2 D g1, �a1 � a2 D g1, a1 � a2 D g2, a2 � a1 D g2. Here, g1; g2 are the
maximal Alexander gradings of bHFK.L/ under its two possible orientations. This has
vertices˙.g1Cg2

2
; g1�g2

2
/;˙.g1�g2

2
; g1Cg2

2
/.

Lemma 8.7 together with the fact that the two-component unlink has knot Floer
homology of rank two implies that we may take g1; g2 > 0.

Suppose that bHFL.L/ has support at one of the vertices of the polytope. After
relabeling the components, and considering the symmetry of the complex, we may
take them to be generators in .g1Cg2

2
; g1�g2

2
/, .�g1Cg2

2
; g2�g1

2
/. Observe that both of

the generators must persist under the spectral sequence to bHFL.L1/, whence g.L1/D
g1 C g2. Since each component of L is either an unknot or a trefoil, it follows that
g1 C g2 2 ¹0; 1º. In either case, it follows that at least one of g1 or g2 is zero, a
contradiction.

Thus, the polytope defined does not have support at its vertices. It follows that the
interior of each face contains exactly two generators, see Figure 4 for an example.
Consider the a1 C a2 D g1 face. Assume the two generators on the interior of this
face are of distinct multi-Alexander gradings. In order that each A1; A2 grading is of
even rank and the complex admits the requisite symmetries and spectral sequences
we must have that g1 D g2. Indeed, considering the Maslov grading m of one of the
generators on the A1 CA2 D g1 face, we see that m� 2.g1 C g2/ D m� 2, whence
again g1 C g2 D 1, and we obtain a contradiction as previously, see Figure 4.

The only remaining case is that on each face the two generators sit in the same
multi-Alexander grading, see Figure 4. Suppose that the generators occur in multi-
Alexander gradings˙.x; g1 � x/,˙.y; g2 C y/. In order that the spectral sequences
to each component are non-zero, in which case the rank of one the components would
be even, we must have that x D �y, g1 � x D g2 C y. It follows that g1 D g2.
Since each bHFL.L/ has support in only two Ai , Aj gradings, it follows that each
component is an unknot. Without loss of generality, we may take the linking number
to be positive, whence it follows that x D g1 � x. It follows that the complex has
support in grading ²

˙
�
g1

2
;
g1

2

�
;

�
˙ g1

2
;�g1

2

�³
:

Letm1 �m2 be the Maslov gradings of the two generators of grading .g1

2
; g1

2
/. Since

A1 is an unknot, we must have that @1x ¤ 0. Without loss of generality, let @1x D y.
Since y does not persist under the spectral sequence to bHFL.L2/, @2y D z. Thus, z
is of Maslov grading m� 2 so that either g1 D 1, in which case L bounds an annulus
and is thereby T .2; 2n/ for some n a contradiction, since these do not have the right
homology, or the remaining generator of bi-Alexander grading is of Maslov grading
¹0; 1º 3 m C 2g1 � 2 � m C 2. The remaining generator of bi-Alexander grading
.g1

2
; �g1

2
/ must be of Maslov grading m C 2g1 � 2 ˙ 1. This is because the other
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A2 A1
– –– g

1

––

A1 A2 g
1

C

A1

A2

m

m–2g
1

A2 A1
– –– g

1

––

A1 A2 g
1

C ––

Figure 4. A rank eight bigraded vector space not arising as the link Floer homology of a link.

remaining generator of bi-Alexander grading .�g1

2
;�g1

2
/ is of Maslov grading either

mC 2g1 � 2 ormC 2g1 � 2. But it should also be of gradingm� 2g1, by symmetry,
a contradiction.

(2) L has three-components. Suppose that L has three-components. Then, each
two-component sublink is either a Hopf link or a two-component unlink. Suppose
that a two-component sublink L � L3 is a Hopf link. Then, the linking number of
L3 with L1 and L2 must be zero as else the rank of the complex would be greater
than eight. It follows that the spectral sequence from bHFL.L/ to bHFL.L�L3/ is just
projection onto the A3 D 0 plane. Suppose that bHFL.L/ is supported in the A3 D 0
plane, then L consists of a disjoint union of a Hopf link and an unknot. If bHFL.L/ is
not supported in the A3 D 0 plane then since the rank in the top A1 grading is four,
it follows that L1 is a braid axis—which would contradict the fact that the linking
number is non-zero—or L is split, in which case L is the disjoint union of the a Hopf
link and an unknot.

Suppose now that each two-component sublink consists of a two-component
unlink. It follows that the bHFL.L/ has rank four on each plane ¹Ai D 0ºiD1;2;3. L
must be of rank eight in multi-Alexander grading .0; 0; 0/, as else the rank is too high.
To see this, note that if there is a generator in multi-Alexander grading .0; 0; x/ for
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x > 0, then there must also exist generators in multi-Alexander gradings .0; y1; x/,
.y2; 0; x/ to ensure that the generator in multi-Alexander grading .0; 0; x/ does not
persist under the spectral sequences to L � L1, L � L2. It follows that there are
at least 6 generators that have non-zero A3 component and at least another 4 with
A3 D 0, a contradiction.

The result then follows from Lemma 8.7.

Proof of Proposition 8.5. Let L be a 3 component link with rank.bHFK.L// D 10.
Suppose that L is fibered. The maximal Alexander grading, A, of bHFK.L/ is given
by 2C g for some g � 0. Note that rank.bHFK.L/.A// D 1. Suppose that the genera-
tor is of Maslov index m. Theorem 4.1 implies that there are at least three generators
of Maslov indexm� 1 in Alexander grading A� 1. The symmetry of bHFK.L/ yields
a summand Fm�4�2g Œ�2 � g�˚ F3m�3�2g Œ�1 � g�. In order for the Alexander poly-
nomial evaluate to 0 on �1, we must add at least another four generators, yielding a
complex of rank at least 12, a contradiction.

We may thus assume that L is not fibered under any orientation. Let gi be the
maximal Alexander grading of bHFK.L/ under each of the four possible orientations
of L, up to an overall reversal in the orientation of L. Note that gi > 0 by Lemma 8.7.
Consider the polytope P cutout by A1 C A2 C A3 D ˙g1, A1 C A2 � A3 D ˙g2,
A1 �A2 CA3 D˙g3, A1 �A2 �A3 D˙g4. Observe that each of these faces must
contain at least two generators. If the edges of P do not contain any generators, then
rank.bHFK.L// � 16, a contradiction.

We may therefore assume that a generator lies on an edge. Without loss of gen-
erality, we may take this to be the edge formed by A1 C A2 C A3 D g1, A1 C A2 �
A3 D g2, namely, A1 C A2 D g1Cg2

2
. Observe that any generator on this edge, as

well as the respective generators yielded by the symmetry of bHFL.L/ on the edge
�A1 � A2 D g1Cg2

2
, persists under the spectral sequence to

bHFL.L � L3/˝ V
�
`k.L1; L3/

2
;
`k.L2; L3/

2

�
and is indeed of maximal (respectively, minimal A1 C A2 grading). Now, there are
only two 2 component links with rank.bHFK.L// � 5: the Hopf link and the unlink.
It follows that `k.Li ; Lj / 2 ¹�1; 0; 1º for each i; j . Thus, the maximal A1 C A2
grading can only be 1. That is, we have that 1 D g1Cg2

2
so that g1 D g2 D 1. It

follows that, under an appropriate orientation ofL, �.L/D 1. It follows thatL bounds
either an annulus and a disk or two disks and a punctured torus. Note that, for each i ,
rank.bHFK.L � Li // � 5 so that L � Li is an unlink, or a Hopf link. Thus, L is the
disjoint union of a Hopf link and an unknot, but this link has knot Floer homology of
rank eight, a contradiction.

We conclude with a proof of Theorem 8.6.
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Proof of Theorem 8.6. Let L0 be the trefoil together with a meridian. It suffices to
show that if bHFK.L/ Š bHFK.L0/ then bHFL.L/ Š bHFL.L0/ by the corresponding
link Floer homology detection result in [11].

Since the maximal Maslov grading of bHFK.L/ is 1
2

, it follows that L has at most
two-components. Since rank.bHFK.L// is even, it follows that L cannot be a knot,
whence L is a two-component link.

Observe that bHFK.L/ detects the linking number of two-component links, so the
linking number is one. Consider bHFL.L/. Let Ai .0/ be the Alexander grading of the
Maslov index 0 generator in bHFL.Li /. Since there are no positive Maslov index gener-
ators in bHFL.L/, it follows thatAi .0/� 0. Since 0�A1.0/CA2.0/C `k.L1;L2/D
2, we have that ¹A1.0/; A2.0/º D ¹0; 1º. Without loss of generality, we may take
A1.0/ D 1. It follows that there is a Maslov index 0 generator in bi-Alexander grad-
ing .3

2
; 1
2
/. By Lemma 4.4, we have that there are Maslov index �1 generators of

bi-Alexander grading .1
2
; 1
2
/; .3

2
; �1
�2
/. Observe that in order that bHFL.L/ admit a

spectral sequence to bHFL.L1/˝ V , there must be a Maslov index �2 generator with
A1 grading 1

2
. Such a generator must be in bi-Alexander grading .1

2
; �1
2
/. By sym-

metry, this determines the Alexander gradings of all but four generators. Consider
the remaining Maslov index �1 suppose it is of bi-Alexander grading .x; 1 � x/.
Observe that in order to admit spectral sequences to bHFL.Li / ˝ V , there must be
Maslov index �2 generators in bi-Alexander gradings .x � 1; 1 � x/ and .x;�x/.
In order that bHFL.L/ be symmetric, we must then have that x D 1

2
. We have thus

determined that bHFL.L/ Š bHFL.L0/, as desired.

9. Detection results for Khovanov homology

In this section, we briefly review Khovanov homology before proving various detec-
tion results.

9.1. A brief review of Khovanov homology

Let L be a link, and R be the ring Z, Z2, or Q. The Khovanov chain complex of L,
.CKh.L;R/; @/, is a finitely generated Z˚ Z-filtered chain complex over R [23]

CKh.LIR/ WD
M
i;j2Z

CKhi;j .L/:

Here, i is called the homological grading, while j is called the quantum grad-
ing. The filtered chain homotopy type of L is an invariant of L. The R-module
CKh.L; R/ has generators corresponding to decorated complete resolutions of D,
while @ is determined by a simple TQFT. The parity of the j gradings in which Kh.L/
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has non-trivial support agrees with the parity of the number of components of L. The
Khovanov homology ofL is obtained by taking the homology of CKh.LIR/. A choice
of basepoint p 2 L induces an action on CKh.LIR/, which commutes with the dif-
ferential. Taking the quotient of CKh.LIR/ by this action and then taking homology
yields a bigraded R-module called the reduced Khovanov homology of L, denoted byfKh.L; pIR/ [24]. Given a collection of points p D ¹p1; p2; : : : ; pkº � L, there is a
generalization of reduced Khovanov homology called pointed Khovanov homology,
Kh.L;pIR/, due to Baldwin–Levine–Sarkar [4].

Kh.LIR/ admits a number of useful spectral sequences. Suppose that L has two-
components L1; L2. If R is Q or Z2, then Kh.LIR/ admits a spectral sequence to
Kh.L1IR/˝ Kh.L2IR/, called the Batson–Seed spectral sequence [9]. Indeed, this
spectral sequence respects the i � j grading on Kh.LIR/ in the sense that

ranki�jDl.Kh.LIR// � ranki�jDlC2`k.L1;L2/.Kh.L1IR/˝ Kh.L2IR//:

There is another spectral sequence, called the Lee spectral sequence, from Kh.LIQ/
which abuts to an invariant called the Lee Homology of L

L.L/ WD
M
i

Li .L/

(see [27]). This spectral sequence respects the i gradings in the sense that

rank.Khi .LIQ// � rank.Li .L//:

Lee showed that

L.L/ Š
nM
iD1

Q2
ai
;

where ai are integers, where L has n-components. Indeed, if L has two-components
L1, L2, then

L.L/ Š Q2
0 ˚Q2

`k.L1;L2/

(see [27, Proposition 4.3]). Moreover, there is an invariant, s.L/—due to Rasmussen
[39] in the knot case and Beliakova–Wehrli in the link case [10]—defined from the
Lee spectral sequence—with the property that

s.L/ � 1 � �.L/:

Finally, there is a spectral sequence, due to Dowlin [12], relating Khovanov homo-
logy and knot Floer homology. If L is a link and p � L, with exactly one element of
p in each component of L, then there is a spectral sequence from Kh.L; pIQ/ to
bHFK.LIQ/ that respects the relative ı-gradings. Here, bHFK.LIQ/ uses the coherent

system of orientations given in [1]. We use this version of knot Floer homology and
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the corresponding link Floer homology for the remainder of the paper. As a corollary,
Dowlin shows that if L has n-components, then

2n�1 rank.fKh.LIQ// � rank.bHFK.LIQ//: (9.1)

9.2. Rank detection results for Khovanov homology

Applying Dowlin’s spectral sequence and the rank detection results for knot Floer
homology from Section 8, we have the following result.

Corollary 9.1. Suppose that L is a two-component pointed link with

rank.fKh.L; pIZ2// � 4:

Then, L is one of the following:

• an unlink,

• a Hopf link,

• T .2; 4/ or T .2;�4/.
Since

rank.Kh.LIZ2// D 2 rank.fKh.LIZ2//
by [42] and

rank.fKh.LIZ2// � rank.fKh.LIQ//
by the universal coefficient theorem, this recovers Zhang–Xie’s classification of two-
component links with rank.Kh.LIZ2// � 8 (see [47, Corollary 1.2]).

Corollary 9.2. Suppose that L is a three-component pointed link. Then

rank.fKh.L; pIQ// > 2:

Proof of Corollary 9.1. Suppose that L is a two-component link with

rank.fKh.LIQ// � 4:

Equation (9.1) implies that rank.bHFK.LIQ// � 8, and the result follows from Theo-
rems 8.1, 8.2, and 8.3.

Proof of Corollary 9.2. Suppose that L is a three-component link with

rank.fKh.LIQ// � 2:

Equation (9.1) implies that rank.bHFK.LIQ// � 8. Theorems 8.1, 8.2, and 8.3 imply
that L is either the disjoint union of a Hopf link and an unknot or an unlink. But these
links have reduced Khovanov homology of too high a rank, a contradiction.
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24 Z

22 Z Z

20 Z2
18 Z Z

16 Z2
14 Z Z

12 Z2
10 Z

8 Z

6 Z

0 1 2 3 4 5 6 7 8

Table 1. Kh.T .2; 8/IZ/: the horizontal axis indicates the i grading, while the vertical axis
denotes the j grading.

9.3. Khovanov homology detects T.2; 8/, T.2; 10/

We prove the following theorems.

Theorem 9.3. Suppose that Kh.LIZ/ŠKh.T.2;8/IZ/. Then,L is isotopic toT .2;8/.

Theorem 9.4. Suppose that Kh.LI Z/ Š Kh.T .2; 10/I Z/. Then, L is isotopic to
T .2; 10/.

This requires the Lee, Batson–Seed, and Dowlin spectral sequences, as well as an
analysis similar to that of Section 7.

Kh.T .2;m/IZ/was computed in [23] and is shown in Tables 1 and 2 in themD 8
andmD 10 cases. Note in particular that Kh.T .2; 2n/IZ/ is Khovanov thin, meaning
that Kh.T .2; 2n/IZ/ is supported in two adjacent j � 2i gradings.

To prove Theorems 9.3 and 9.4, we first show that any link L with

Kh.LIZ/ Š Kh.T .2; 2n/IZ/

has two-components, with linking number n and �.L/ � 2 � 2n. We then show that
the two-components are unknotted in the n D 4; 5 cases. After that, we conclude by
showing that L must bound an annulus after reversing the orientation of one of the
components, thereby completing the proofs.

Lemma 9.5. Suppose that

Kh.LIZ/ Š Kh.T .2; 2n/IZ/:

Then, L is a two-component link with linking number n and �.L/ � 2 � 2n.
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28 Z

26 Z Z

24 Z2

22 Z Z

22 Z2

20 Z Z

18 Z2

16 Z Z

14 Z2

12 Z

10 Z

8 Z

0 1 2 3 4 5 6 7 8 9 10

Table 2. Kh.T .2; 10/IZ/: the horizontal axis indicates the i grading, while the vertical axis
denotes the j grading.

We prove this lemma using Lee’s spectral sequence [27], which has Kh.LIQ/ as
E1 page, and E1 page a complex of rank 2n, where n is the number of components
of L.

Proof of Lemma 9.5. Suppose that L is as in the theorem. By the universal coefficient
theorem, there are exactly two homological gradings in which the rank of Khi .LIQ/
is at least two, namely, i D 0 and i D 2n. Since

rank.Khi .LIQ// � rank.Li .LIQ// and Li .LIQ/ Š
mM
iD1

Q2
ai
;

where ai 2 Z,m is the number of components of L, it follows that L can have at most
two-components. To see that L has exactly two-components, note that L has an even
number of components since Kh.LIZ/ is supported in even quantum gradings [23,
Proposition 24].

The linking number of the two-components ofL is half the difference in the homo-
logical gradings of the generators which persist under Lee’s spectral sequence [27,
Proposition 4.3]; hence, the linking number of L is n.

Finally, we note that since L is Khovanov thin, with generators supported in the
gradings j � 2i D 2n; 2n C 2, it has s-invariant given by n C 1, whence �.L/ �
2 � 2n (see [10]).
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We can now prove the following two lemmas.

Lemma 9.6. Suppose that Kh.LIZ/ Š Kh.T .2; 8/IZ/. Then, L has unknotted com-
ponents.

Lemma 9.7. Suppose that Kh.LIZ/ŠKh.T .2;10/IZ/. Then,L has unknotted com-
ponents.

Both of these use the Batson–Seed link splitting spectral sequence [9] to bound
the rank of the components of L in certain combinations of i and j gradings. We
use [9, Corollary 3.4] which states that if L is a link consisting of two-components
L1, L2, then

rankl.Kh.LIF // � ranklC2`k.L1;L2/.Kh.L1IF /˝ Kh.L2IF //: (9.2)

Here, F is a field; we will use both Z2 and Q accordingly, and rankl denotes the
i � j D l grading part of the relevant vector space.

For Lemma 9.6, we use the fact that the only knots K with rank.Kh.KIZ2// � 8
are the trefoils and unknot. This follows from Kronheimer–Mrowka’s unknot detec-
tion result [26], as well as Baldwin–Sivek’s trefoil detection results [6], and the fact
that for knots K rankZ2

.Kh.KIZ2// is of the form 2C 4n for some n � 0.

Proof of Lemma 9.6. Suppose thatL is as in the hypothesis of the lemma. Lemma 9.5
implies that L consists of two-components, L1 and L2 of linking number 4. From
Kh.LIZ/, as shown in Table 1, we deduce that rankZ2

.Kh.LIZ2// D 16 by the uni-
versal coefficient theorem, so the Batson–Seed spectral sequence implies that

rank.Kh.Li IZ2// � 8;

whence each component of L is an unknot or a trefoil [6]. Indeed, we readily see that
at least one component is unknotted.

We now consider Kh.LIQ/, which we can determine from Kh.LIZ/ via the uni-
versal coefficient theorem. Suppose that L has a right-hand trefoil component. Then,
ranki�jD�4.Kh.T .2; 3/IQ/ ˝ Kh.U IQ// D 2, but ranki�jD�12.Kh.LIQ// D 1,
contradicting equation (9.2). Similarly,

ranki�jD2.Kh.T .2;�3/IQ/˝ Kh.U IQ// D 3;

which contradicts ranki�jD�6.Kh.LIQ// D 1 by equation (9.2). Thus, both compo-
nents of L are unknotted.

Lemma 9.7 requires some extra analysis since there is no complete classification
of knots with rank.Kh.LIZ2// D 10. To deal with this latter case, we use Dowlin’s
spectral sequence and Proposition 6.1.
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Proof of Lemma 9.7. Suppose that Kh.LIZ/ Š Kh.T .2; 10/IZ/. Then, from Table 2
and the universal coefficient theorem, we can see that rank.Kh.LIZ2//D 20. Batson–
Seed’s spectral sequence implies that at least one component of L is unknotted, and
the other is a knot L2 with rank.Kh.L2IZ2// � 10. If rank.Kh.L2IZ2// � 10, then
rank.fKh.L2I Z2// � 5 so that K is an unknot, a trefoil, a figure eight, or a knot
with rank.fKh.L2IZ2// D 5. Let U denote the unknot. To see that L2 must also be
unknotted, we proceed by the following cases:

(1) L2 is T .2; 3/. In this case,

Kh.T .2; 3/IQ/˝ Kh.U IQ/ Š .Q�6 ˚Q2
�3 ˚Q�1/˝ .Q�1 ˚Q1/

Š Q�7 ˚Q�5 ˚Q2
�4 ˚Q3

�2 ˚Q0:

But rank.Kh.T .2; 10/IQ// is rank one in exactly one i � j grading, a contradiction.
(2) L2 is T .2;�3/. Then

Kh.T .2;�3/IQ/˝ Kh.U IQ/ Š .Q6 ˚Q2
3 ˚Q1/˝ .Q1 ˚Q�1/

Š Q7 ˚Q5 ˚Q2
4 ˚Q3

2 ˚Q0:

But Kh.T .2; 10/IQ/ is rank one in exactly one i � j grading, a contradiction.

(3) rank.fKh.L2IZ2//D5. In this case, we have that rank.fKh.L2IQ//� 5, whence
rank.bHFK.L2IQ// � 5. If rank.bHFK.L2IQ// < 5, then L2 is a trefoil or the unknot,
cases which we have already dealt with. Thus, we may take rank.bHFK/.L2IQ/ D 5.
We show that L2 is a figure eight or has the same knot Floer homology as T .2;˙5/.
Suppose that L2 is of genus g > 0. Note that rank.bHFK.L2IQ; g// � 2. Note also
that since Kh.LIZ/ is Khovanov thin, Kh.L; pIQ/ is ı-thin [4], whence bHFK.L/ is
ı-thin. We proceed by the following cases:

(a) Suppose that rank.bHFK.L2IQ; g// D 2. Then, bCFK.L2IQ/ contains a dif-
ferential of length 2g and one of length g. From Proposition 6.1, we see that
this yields a summand of .bCFL.LIQ/; @/ of rank 8g and another of rank
4g. Thus, rank.bHFL.LIQ// � 12g. It immediately follows that g D 1. The
symmetry of bHFL.L/ implies that rank.bHFL.L// � 24, a contradiction.

(b) Suppose that rank.bHFK.L2IQ; g// D 1. Consider bCFL.L2IQ/. If g D 1,
then L2 is the figure eight knot. If g > 1, there are two possible forms for
bHFK.L2/, as shown in Figure 5. To see this, we need to use the fact that if

rank.bHFK.L2; g � 1// D 1, then there cannot be both differentials from the
top grading to the next to top grading and from the next-to-bottom grading to
the bottom grading. This is the algebraic content of [2].

In either case, since there is both a length one differential and a length g � 1
differential, rank.bHFL.LIQ//� 4.g � 1/C 4C 4D 4gC 4, whence g � 4. Suppose
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A

A

m

m

g– 1

10

1

0g–

2

g– 1 g– 0

0–2–2– g 2– gC1

gg–1

g2g2 1–

gg–1

Figure 5. Different possibilities for bCFK.L2IQ/: here, we denote the Alexander grading of the
generators by A and the Maslov grading by m.

we are in the first case. Indeed, since the minimal A2 grading of these generators is
�3
2

, symmetry yields at least another 4.g � 1/ generators so that rank.bHFL.LIQ// �
8.g � 1/C 4C 4C 4 so that g D 2, and bHFK.L2IQ/ Š bHFK.T .2; 5/IQ/.

Suppose that we are in the second case. We have that g 2 ¹2; 3; 4º. If g D 2, then
bHFK.L2/ Š bHFK.T .2;�5//. If g D 4, using the symmetry of bHFL.LIQ/, we find

that rank.bHFL.LIQ// � 24, a contradiction.

If g D 3, the symmetry of bHFL.LIQ/ implies that the rank.bHFL.LIQ// � 24, a
contradiction.

(4) L2 is the figure eight. In this case,

Kh.U IQ/˝ Kh.L2IQ/ Š .Q3 ˚Q1 ˚Q2
0 ˚Q�1 ˚Q�3/˝ .Q1 ˚Q�1/

But Kh.T .2; 10/IQ/ is rank one in exactly one i � j grading, a contradiction.
(5) bHFK.L2IQ/ŠbHFK.T .2;5/IQ/, or bHFK.L2IQ/Š bHFK.T .2;�5/IQ/. Since

`k.L1; L2/ D ˙5, there is a summand

bHFK.T .2;˙5/IQ/˝ V
�
˙ 5

2
; a

�
of bHFL.LIQ/, for some a 2 ˙5

2
C Z. The symmetry of bHFL.LIQ/ yields another

10 generators. There can be no additional generators, as this would violate the rank
inequality from Dowlin’s spectral sequence

rank.bHFL.L/IQ/ � rank.Kh.T .2; 10/IQ// D 20;

where the final equality is obtained from the universal coefficient theorem. Note that
in order that each A1 grading have even rank, we must have that bHFL.LIQ/ is sup-
ported only inA1 gradings˙1

2
. However, sinceL1 is unknotted and there is a spectral
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sequence from bHFL.L/ to bHFL.L1/˝ V Œ52 �, there must be generators in A1 grading
5
2

, a contradiction.

We can now proceed to the proofs of the Khovanov homology detection results.
We apply Dowlin’s spectral sequence and the classification of E2 collapsed chain
complexes given in Proposition 6.1. From here, it suffices to prove the following pair
of propositions.

Proposition 9.8. Let F be Q or Z2. Suppose that L is a link satisfying the following
conditions:

(1) L has exactly two-components, L1 and L2, which are both unknots,

(2) `k.L1; L2/ D 4,

(3) �.L/ � �6,

(4) rank.bHFK.LIF // � 16,

(5) bHFK.LIF / is ı-thin.

Then, L is T .2; 8/.

Proposition 9.9. Let F be Q or Z2. Suppose that L is a link satisfying the following
conditions:

(1) L has two exactly two-components, L1 and L2, which are both unknots,

(2) `k.L1; L2/ D 5,

(3) �.L/ � �8,

(4) rank.bHFK.LIF // � 20,

(5) bHFK.LIF / is ı-thin.

Then, L is T .2; 10/.

Before proving these propositions, we apply them to obtain Theorems 9.3 and 9.4,
respectively.

Proof of Theorem 9.3. It suffices to show that L satisfies the conditions in Proposi-
tion 9.8. Conditions (1), (2), and (3) are implied by Lemmas 9.5 and 9.6. To see that
condition 4 holds, observe that rank.Kh.LIZ2// D 16 by the universal coefficient
theorem. It follows that rank.fKh.LIZ2// D 8 by [42] so that rank.fKh.LIQ// � 8 by
the universal coefficient theorem

rank.Kh.L; p;Q// � rank.fKh.LIQ//
by [4, Theorem 1.2], whence bHFK.LIQ/ � 16.

To see that condition (5) holds, note that Kh.LIQ/ is ı-thin so that Kh.L; pIQ/
is ı-thin by [4, Lemma 2.11].
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Proof of Theorem 9.4. This follows by the same argument as in the proof of Theo-
rem 9.3.

We now prove the two requisite Propositions 9.8 and 9.9.

Proof of Proposition 9.8. Suppose that L satisfies the conditions given in the propo-
sition. Consider bCFL.LIQ/. Since bHFK.L/ is ı-thin, bCFL.LIQ/ is an E2 collapsed
chain complex. Since �.L/ � �6, the maximal Alexander grading of bHFK.LIQ/ is
at least 3.

Consider bCFL.L/. Since L has unknotted components, it follows that .bCFL.LI
Q/; @/ cannot contain a V l

d
or H l

d
summand, and that there are Maslov grading 0

and �1 generators with Ai D 2. Suppose that the Maslov grading 0 generator is of
A1 C A2-grading l .

Suppose that l > 4. Since L1, L2 are unknots with linking number 4, there must
be Maslov grading 0 and Maslov grading �1 generators on both the line A1 D 2 and
the line A2 D 2. In particular, there are Maslov grading 0 generators of bi-Alexander
gradings .2; l � 2/ and .l � 2; 2/ and Maslov grading �1 generators of bi-Alexander
gradings .2; l � 3/, .l � 3;2/. Since these persist under the spectral sequence to V and
are suitably identified there, it follows that .bCFL.L/; @/ has summands X l�5�1 Œ2; 2�˚
X l�40 Œ2; 2�. From the symmetry of bHFL.LIQ/, and the fact that rank.bHFL.LIQ// �
16, we see immediately that l � 6.

If l � 4, then there are summands Y 4�l0 Œl � 2; l � 2�˚ Y 5�l�1 Œl � 3; l � 3�. Note
l � 1 as else rank.bHFK.L// > 16. Similarly, l D 2 would violate the rank bound
after accounting for the symmetry of bHFL.L/. If l D 1, then rank.bHFL.L// � 16. It
follows that there are no additional generators, and we immediately see that L bounds
an annulus, contradicting the fact that the maximal Alexander grading is at least 3.
If l 2 ¹3; 6º, then the complex is determined by the symmetry of bHFL.LIQ/. In
particular, we see that there are copies of Bd in specified bi-gradings. In the l D 6

case, we quickly see that each component is a braid axis by [28, Proposition 1], which
implies that the maximal Ai gradings are 2, ruling out the l D 6 case. If l D 3, we see
immediately that �.L/ > �6, a contradiction.

If l D 5, we readily see that—apart from in the case that bCFL.LIQ/ contains
summands either B�6Œ�3; 2� ˚ B�6Œ2;�3� or B�1Œ2; 2� ˚ B�11Œ�3;�3�—at least
one component is a braid axis by [28, Proposition 1], meaning that the maximal Ai
grading is 2, a contradiction. The B�1Œ2; 2� ˚ B�11Œ�3;�3� is excluded by noting
that, upon reversing the orientation of a component of L, L bounds an annulus, and
hence, L is T .2; 8/, a contradiction since it has the wrong link Floer homology type.

B�6Œ�3; 2�˚ B�6Œ2;�3� case can be excluded using Proposition 4.6, with x, Nx
and y generators of Alexander bi-gradings .�3; 3/; .3;�3/, and .3;�2/, respectively.

If l D 4, then by symmetry we have a summand B�8Œ�2;�2�. There are at most
two remaining summands. Suppose that there are two. Let BiCj�4Œi; j � be such a
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summand. Observe that �2 � i; j � 1, as else the rank of bHFL.L/ in the maximal A1
or A2 grading is 2, but the maximal such grading is not 2. We may assume without
loss of generality that j � i . If .i; j / 2 ¹.�2; 0/; .�1; 0/; .�2; 1/; .�1; 1/; .0; 1/º by
applying Proposition 4.6 with x the generator of grading .i; j C 1/, Nx the generator
of grading .�i;�j � 1/, and y the generator of grading .�i;�j /. The cases that
.i; j / D .�2;�1/ can be excluded by considering the link L0 given by reordering
the two-components of L, which reduces this situation to the case .i; j / D .0; 1/.
We can thus conclude that i D j . It follows that, upon reversing the orientation of
a component, L bounds an annulus. Since L has unknotted components and linking
number 4, it follows that L is T .2; 8/, as desired.

If there is only one remainingBd summand, then it must be of the formBd Œ�1=2;
�1=2� for some d by the symmetry of Link Floer homology. But this is a contradiction
since `k.L/ is even, so the Alexander gradings are Z valued.

If there is no other Bd summand, then again we see that, upon reversing the orien-
tation of a component ofL,L bounds an annulus and hence is T .2;8/, a contradiction,
since it has the wrong link Floer homology type.

The proof of Proposition 9.9 is virtually the same but with some additional case
analysis.

Proof of Proposition 9.9. Suppose L is as in the hypotheses of the proposition. Since
L is delta thin, bHFL.T .2; 10/IQ/ is E2-collapsed. Since �.L/ � �8, the maximal
Alexander grading is at least n. Since the components of L are unknotted, bCFL.LI
Q/ consists only of X l

d
; Y l
d

and Bd summands. Note that L has Maslov index 0, �1
generators in each line Ai D 5

2
. Let l be the A D A1 C A2 grading of the Maslov

index 0 generator. If l > 5, then bCFL.LIQ/ has summands

X l�6�1

�
5

2
;
5

2

�
˚X l�50

�
5

2
;
5

2

�
:

Note that, for l > 5,

rank
�
X l�5�1

�
5

2
;
5

2

�
˚X l�40

�
5

2
;
5

2

��
D 4l � 16:

Observe that the symmetry of bHFL.LIQ/, together with the fact that rank.bHFL.LI
Q// � 20, implies that l � 7.

If l D 7, then the position of the remaining Bd summands are forced by the sym-
metry of bHFL.L/. We find that the maximal Ai gradings are 9

2
, each of rank 2. It

follows that each component is braided with respect to the other. But then, since
each component should be unknotted, it follows that the maximal Alexander grad-
ing should be half the linking number of L, i.e., 5

2
, a contradiction.
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If l D 6, then either bCFL.L/ contains a summand

X0�1

�
5

2
;
5

2

�
˚X10

�
5

2
;
5

2

�
˚ B�13

��7
2
;
�7
2

�
and at most three extra Bd summands.

If there is one extra Bd summands, then must be of the form B�7Œ
�1
2
; �1
2
� by

symmetry, so if there are either zero or one extra Bd summands, we see thatL bounds
an annulus upon reversing the orientation of a component, and L is therefore should
be T .2; 10/, a contradiction, since T .2; 10/ has distinct link Floer homology.

If bHFL.LIQ/ contains two extra Bd summands, then unless they are of the form

B�1

�
5

2
;
5

2

�
˚ B�13

��7
2
;
�7
2

�
or B�7

�
5

2
;
�7
2

�
˚ B�7

��7
2
;
5

2

�
;

we see immediately that at least one component is a braid axis, and hence the maximal
Ai grading is 5

2
, a contradiction. The B�1Œ52 ;

5
2
�˚ B�13Œ�72 ; �72 � is excluded by not-

ing that L bounds an annulus upon reversing the orientation of a component whence
L is T .2; 10/, a contradiction since T .2; 10/ has distinct link Floer homology. The
B�7Œ

5
2
; �7
2
�˚B�7Œ�72 ; 52 � case is excluded by noting that we can apply Proposition 4.6

with x a generator in .i; j / grading .�7
2
; 7
2
/, Nx a generator of grading .7

2
; �7
2
/ and y a

generator of grading .7
2
; �5
2
/.

If there are three additional Bd summands, then we note that in order to satisfy
the symmetry properties there must be a summandB�7Œ�12 ;

�1
2
�. Unless the remaining

Bd summands are B�1Œ52 ;
5
2
�˚ B�13Œ�72 ; �72 �, or B�8Œ�52 ; 72 � B�8Œ32 ; �52 �, we have

that at least one component, Li is a braid axis, so again the maximal Ai grading must
be 5

2
, a contradiction. In the first case, we see thatL bounds an annulus upon reversing

its orientation, a contradiction, since no link T .2; 2n/ has the requisite homology. We
can exclude the second case by an application of Proposition 4.6 with x a generator in
.i; j / grading .�7

2
; 7
2
/, Nx a generator of grading .7

2
; �7
2
/ and y a generator of grading

.7
2
; �5
2
/.

If l � 5, then there are summands Y 5�l0 Œl � 5
2
; l � 5

2
�˚ Y 6�l�1 Œl � 7

2
; l � 7

2
�. Con-

sidering the symmetry properties of bHFL.L/ we readily see that either l D 0 or
l � 4, as else rank.bHFK.LIQ// > 20. If l D 0, then there are no additional gen-
erators, and we see that L bounds an annulus, contradicting our assumption on the
Euler characteristic. If l D 4, then bHFL.LIQ/ either contains no extra generators or
a cube B�6Œ�12 ;

�1
2
� by symmetry. But in this case the maximal Alexander grading of

bHFK.L/ is 4, contradicting the assumption that �.L/ � �8.
We are thus left only with the case that l D 5, in which case bCFL.LIQ/ has a sum-

mand X0Œ52 ;
5
2
�˚ Y�1Œ32 ; 32 �. By symmetry, bCFL.LIQ/ has a summand B�10Œ�52 ;

�5
2
�

bCFL.LIQ/ can have at most three other Bd summands. If there are one or three more
Bd summands, then the symmetry of bHFL.LIQ/ implies that one such summand
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must be of the form B�6Œ
�1
2
; �1
2
�. Thus, if bHFL.LIQ/ has 0 or 1 extra Bd summands

we see that after reversing the orientation of a component of L, L bounds an annu-
lus and is therefore T .2; 10/, a contradiction since T .2; 10/ has distinct link Floer
homology.

Suppose that the bCFL.LIQ/ has two or three additional Bd summands. If there
are three, then the symmetry of bHFL.LIQ/ implies again that the bCFL.LIQ/ has
a B�6Œ�12 ;

�1
2
� summand. Let BiCj�5Œi; j � be one of the two remaining summands.

Without loss of generality, we may take j � i . Observe that, unless �5
2
� i � j � 3

2
,

we have that bHFL.L/ is of rank 2 in one of the two maximal Alexander gradings, Ai ,
so that Li is a braid axis, but the maximal Ai grading is not 5

2
, a contradiction.

Suppose that .i; j / 62 ¹.�5
2
; �5
2
/; .�5

2
; �3
2
/; .�3

2
; �3
2
/; .�1

2
; �1
2
/; .�1

2
; 1
2
/; .1

2
; 1
2
/,

.3
2
; 3
2
/º. Then, we can apply Proposition 4.6 with x the generator of grading .i; j C 1/,

Nx the generator of grading .�i;�j � 1/ and y the generator of grading .�i;�j / to
obtain a contradiction.

If .i; j / D .�5
2
; �3
2
/ or .�1

2
; 1
2
/, then we can consider the link L0 obtained by

switching the order of the two-components. This reduces these two cases to the case
.i; j /D .1

2
; 3
2
/ and .i; j /D .3

2
;�1

2
/ that were excluded above. It follows that bHFL.L/

is contained in the lines of A2 D A1, A2 D A1 ˙ 1
2

. It follows in turn that L bounds
an annulus after changing the orientation of a component. Since L has unknotted
components and linking number 5, it follows that L is T .2; 10/, as required.

We conclude by noting that Martin’s detection result for T .2; 6/ [28], T .2; 4/
detection [47], and T .2; 2/ detection [7] could have been obtained by similar methods
to those presented in this paper.
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