Exponential and sub-exponential stability times for the NLS on the circle
- Luca BiascoUniversità degli Studi Roma Tre, Italy
- Jessica Elisa MassettiScuola Normale Superiore, Pisa, Italy
- Michela ProcesiUniversità degli Studi Roma Tre, Italy

Abstract
In this note we study stability times for a family of parameter dependent nonlinear Schrödinger equations on the circle, close to the origin. Imposing a suitable Diophantine condition (first introduced by Bourgain), we state a rather flexible Birkho¤ Normal Form theorem, which implies, e.g., exponential and sub-exponential time estimates in the Sobolev and Gevrey class respectively. Complete proofs are given elsewhere (see [BMP18]).
Cite this article
Luca Biasco, Jessica Elisa Massetti, Michela Procesi, Exponential and sub-exponential stability times for the NLS on the circle. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 30 (2019), no. 2, pp. 351–364
DOI 10.4171/RLM/850