Gagliardo–Nirenberg Inequality for rearrangement-invariant Banach function spaces
Alberto Fiorenza
Università degli Studi di Napoli Federico II, Italy and Consiglio Nazionale delle Ricerche, Napoli, ItalyMaria Rosaria Formica
Università degli Studi di Napoli Parthenope, ItalyTomáš G. Roskovec
University of South Bohemia, České Budějovice, Czech Republic and Czech Technical University in Prague, Czech RepublicFilip Soudský
University of South Bohemia, České Budějovice, Czechia
Abstract
The classical Gagliardo–Nirenberg interpolation inequality is a well-known estimate which gives, in particular, an estimate for the Lebesgue norm of intermediate derivatives of functions in Sobolev spaces. We present an extension of this estimate into the scale of the general rearrangement-invariant Banach function spaces with the proof based on the Maz’ya’s pointwise estimates. As corollaries, we present the Gagliardo–Nirenberg inequality for intermediate derivatives in the case of triples of Orlicz spaces and triples of Lorentz spaces. Finally, we promote the scaling argument to validate the optimality of the Gagliardo–Nirenberg inequality and show that the presented estimate in Orlicz scale is optimal.
Cite this article
Alberto Fiorenza, Maria Rosaria Formica, Tomáš G. Roskovec, Filip Soudský, Gagliardo–Nirenberg Inequality for rearrangement-invariant Banach function spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 30 (2019), no. 4, pp. 847–864
DOI 10.4171/RLM/872