Quantitative estimates for sampling type operators with respect to the Jordan variation
Laura Angeloni
Università degli Studi di Perugia, ItalyDanilo Costarelli
Università degli Studi di Perugia, ItalyGianluca Vinti
Università degli Studi di Perugia, Italy
Abstract
In this paper, we study the order of approximation with respect to the Jordan variation for the generalized and the Kantorovich sampling series, based upon averaged type kernels. In particular, we establish some quantitative estimates for the above operators. For the latter purpose, we introduce a suitable modulus of smoothness in the space of absolutely continuous functions on the whole real line.
Cite this article
Laura Angeloni, Danilo Costarelli, Gianluca Vinti, Quantitative estimates for sampling type operators with respect to the Jordan variation. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 31 (2020), no. 2, pp. 269–284
DOI 10.4171/RLM/890