Global Lipschitz extension preserving local constants

  • Simone Di Marino

    Università di Genova, Italy
  • Nicola Gigli

    SISSA, Trieste, Italy
  • Aldo Pratelli

    Università di Pisa, Italy
Global Lipschitz extension preserving local constants cover

A subscription is required to access this article.

Abstract

The intent of this short note is to extend real valued Lipschitz functions on metric spaces, while locally preserving the asymptotic Lipschitz constant. We then apply this results to give a simple and direct proof of the fact that Sobolev spaces on metric measure spaces defined with a relaxation approach à la Cheeger are invariant under isomorphism class of mm-structures.

Cite this article

Simone Di Marino, Nicola Gigli, Aldo Pratelli, Global Lipschitz extension preserving local constants. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 31 (2020), no. 4, pp. 757–765

DOI 10.4171/RLM/913