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Abstract. In this paper we settle Iwaniec and Sbordone’s 1994 conjecture concerning very weak
solutions to the p-Laplace equation. Namely, on the one hand we show that distributional solutions
of the p-Laplace equation in W 1;r for p ¤ 2 and r > max ¹1; p � 1º are classical weak solutions if
their weak derivatives belong to certain cones. On the other hand, we construct via convex integration
non-energetic distributional solutions if this cone condition is not met, thus disproving Iwaniec and
Sbordone’s conjecture in general.

Keywords: very weak solutions, p-Laplace, convex integration.

1. Introduction

The p-Laplace equation

�pu WD div.jDujp�2Du/ D 0 in �; (1.1)

which formally corresponds to the Euler–Lagrange equation of the energy
ˆ
�

jDujp dx;

is one of the most well studied problems in the calculus of variations. The classical
regularity theory has been developed in a series of papers of N. N. Ural’tseva [43], K. Uhlen-
beck [42], and L. C. Evans [14] for p � 2, and of J. L. Lewis [29] and P. Tolksdorf [41]
for p > 1 (see also [10, 11]). To mention some of the milestones obtained for p-laplacian-
type problems, without pretending to be exhaustive, we may cite the counterexamples to
regularity of vectorial problems, the Harnack inequality, the partial regularity theory for
vectorial problems, the estimates of the singular set, and Calderón–Zygmund theory (see
[8, 12, 13, 28, 31–33, 38, 39] and the references cited therein). The results for the p-Laplace
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equation have become a paradigm to attack several more complex problems, including
the associated parabolic equation, fractional versions of the same equation, functionals
with variable exponent p.x/, double phase functionals, free boundary problems involving
p-energies, to mention but a few.

Given a bounded open set��Rn, every distributional solution of the Laplace equation

�u D 0 in �

is known by Weyl’s Lemma to be a classical, and therefore also analytic, solution. For
the p-Laplace equation (1.1) an analogous result was conjectured by T. Iwaniec and
C. Sbordone [26] (see also [31, Section 9]). Indeed, they conjectured that distributional
solutions of the p-Laplace equation in W 1;r for p ¤ 2 and r > max ¹1; p � 1º (notice
that for such solutions one can give the natural distributional meaning to the equation)
are of finite energy and hence belong, in the interior of the domain, to C 1;˛ for some
˛ > 0, according to the classical regularity theory . This conjecture has been proven true
when r is sufficiently close to p, namely for p � ı < r < p for some ı which depends
only on n and p. This result was first obtained in [26] via a quantitative version of the
Hodge decomposition theorem, previously introduced by Iwaniec [23] in the context of
quasiregular mappings (see also [24, 25]). A different approach was then followed by
Lewis [30], based on a quantitative version of the Lipschitz truncation.

Our first main result, which is the content of Section 2, gives a positive answer to the
conjecture of [26], under the additional condition (1.3).

Theorem 1.1. Let p > 1, � be an open and bounded subset of Rn and f 2 L1.�/.
Suppose u 2 W 1;max ¹1;p�1º.�/ solves

div.jDujp�2Du/ D f (1.2)

in the weak sense on � and, for all 1 � i � n, there exist constants �i 2 ¹1;�1º; Li 2 R
such that

�i@iu � Li a.e. in �: (1.3)

Then u 2 W 1;p
loc .�/ and for all open �0 compactly contained in � there exists a constant

C > 0 depending on n, R, and d.�0; @�/, where R > 0 is such that � � BR.0/, for
which
ˆ
�0
jDujp.x/dx �C.kf kL1.�/CkDuk

p�1

Lp�1.�/
/.kukL1.�/C j.L1; : : : ;Ln/j/: (1.4)

Unexpectedly, Theorem 1.1 shows a connection, at least when n D 2, with the field
of elliptic estimates by compensation. Roughly speaking, these are estimates on vector
fields v 2 L1.Rm;Rn/ satisfying some underdetermined system of linear PDEs, A.v/D 0

in the sense of distributions, which is compensated by the fact that v satisfies nonlinear
inclusion constraints, v.x/ 2 K � Rn (see [19]). This classical line of research has led to
striking achievements in the last few years; see [2, 9] and references therein.
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Iwaniec and Sbordone’s conjecture has a similar flavor to the well understood problem
for elliptic equations

div.A.x/Du.x// D 0 in � (1.5)

with �I � A � ƒI . For every q 2 .1; 2/ and n � 2, J. Serrin [36] provided a striking
example of an equation of the form (1.5) which has an unbounded solution u 2 W 1;q .
Hence, such a solution cannot belong to W 1;2.�/ in view of the results of E. De Giorgi
and J. Nash. However, in this context subsequent results [1, 4, 20, 27] showed that the
situation is completely different as long as suitable continuity of A is assumed: in this case,
every W 1;1 solution is necessarily of finite energy, namely W 1;2.�/, and the regularity
theory applies. These results do not provide any clear intuition on the problem we are
considering for the p-laplacian, for two main reasons: first, because the freedom in the
choice of A is missing in our context, and secondly because it is not clear how to interpret
the positive results about the continuous coefficients.

Our second main result, which occupies the rest of the article, shows the sharpness of
assumption (1.3) (see (1.6)), and provides a negative answer to the above-stated conjecture
in its full generality.

Theorem 1.2. Let��R2 be a ball. For every p 2 .1;1/;p¤ 2, there exists "D ".p/ > 0
and a continuous u 2 W 1;p�1C".�/ such that u is affine on @�,

3

4
� @yu �

5

4
a.e. on �; (1.6)

div.jDujp�2Du/ D 0 (1.7)

in the sense of distributions, but for all open B � �,
ˆ
B

jDujp dx D1: (1.8)

For fixed ˛ 2 .0; 1/, one can even construct u 2 C ˛.�/; see [3, Lemma 2.1] for
details. In order not to add further technical details to the construction, we will content
ourselves with proving Theorem 1.2. The method we employ to show Theorem 1.2 is
convex integration. Specifically, we are going to use the staircase laminate construction,
which, to the best of our knowledge, was introduced by D. Faraco [15]. Since then, this type
of construction has been used in several contexts [3, 5, 6, 16–18], and is tailored to tackle
problems in which concentration phenomena appear. Similar techniques were developed
to find counterexamples in which oscillation phenomena are the issue. Namely, while the
staircase laminate construction deals, roughly speaking, with finding maps which are in
some W 1;p space but no better, similar methods can be used, for instance, to find maps
which are Lipschitz and not C 1 on any open set; see for instance [7, 22, 35, 37, 40]. Instead
of outlining our proof here, we defer the discussion to Section 3, where the structure of the
part of the paper devoted to the construction of the counterexample will be explained in
detail.
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2. When are very weak solutions classical solutions?

This section is devoted to the proof of Theorem 1.1, which confirms Iwaniec and Sbordone’s
conjecture under the additional condition that each component of Du has a one-sided,
uniform bound (1.3).

Proof of Theorem 1.1. Fix compactly contained open sets

�0 � �00 � �000 � �

with
d.�0; @�/ � 2 d.�000; @�/: (2.1)

Consider a radial and positive smooth mollification kernel �" with support in B".0/ for
each " > 0, and define the convolution of u with �",

u".x/ WD .u ? �"/.x/ for every x 2 �000:

This is well defined as long as " < d.�000; @�/. Observe that (1.3) still holds for u".
Let  2 C1c .�

00/ be such that  .x/ 2 Œ0; 1� for x 2 �,  � 1 on �0 and

kD kL1.�/ � cd.�0; @�/�1:

We test the weak form of (1.2) with the test function u" to obtain

nX
iD1

ˆ
�

jDujp�2.x/@iu.x/@i .u".x/ .x// dx D

ˆ
�

f u" dx;

which is equivalent to

nX
iD1

ˆ
�\¹jDuj<1º

jDujp�2@iu@iu" dx C

nX
iD1

ˆ
�\¹jDuj�1º

jDujp�2@iu@iu" dx

D

ˆ
�

.f  C g/u" dx; (2.2)

where

g WD �

nX
iD1

jDujp�2@iu@i :

Notice that the artificial splitting of � into � \ ¹jDuj < 1º and � \ ¹jDuj � 1º is
necessary for the subsequent argument since, if p < 2, one may have jDujp�2 … L1.�/.
The first term on the left-hand side of (2.2) converges since @iu" ! @iu in L1.�000/ as
"! 0:

lim
"!0

nX
iD1

ˆ
�\¹jDuj<1º

jDujp�2@iu@iu" dx D

ˆ
�\¹jDuj<1º

jDujp dx: (2.3)
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Finally, we exploit (1.3) by writing

nX
iD1

ˆ
�\¹jDuj�1º

jDujp�2@iu@iu" dx

D

nX
iD1

ˆ
�\¹jDuj�1º

jDujp�2.@iu � �iLi /.@iu" � �iLi / dx

C

nX
iD1

�iLi

ˆ
�\¹jDuj�1º

jDujp�2.@iu" C @iu � �iLi / dx:

Using our choice of � \ ¹jDuj � 1º and Du 2 Lmax ¹1;p�1º.�/, the last summand con-
verges to

nX
iD1

�iLi

ˆ
�\¹jDuj�1º

jDujp�2.2@iu � �iLi / dx:

Moreover, by (1.3), we can use Fatou’s Lemma to bound from below the first summand.
Thus, we findˆ

�0\¹jDuj�1º

jDujp dx �

ˆ
�\¹jDuj�1º

jDujp dx

� lim inf
"!0C

nX
iD1

ˆ
�\¹jDuj�1º

jDujp�2@iu@iu" dx: (2.4)

We now estimate the right-hand side of (2.2). Let R > 0 be such that � � BR.0/. Using
the definition of g, we find a constant C 0 D C 0.R; d.�0; @�// such that for all " > 0,ˇ̌̌̌ˆ

�

.f  C g/u" dx

ˇ̌̌̌
� kf kL1.�/ku"kL1.�00/ C C

0
kDuk

p�1

Lp�1.�/
ku"kL1.�00/: (2.5)

We claim the existence of a constant C D C.n; R; d.�0; @�// such that for all 0 < " <
d.�000; @�/,

ku"kL1.�00/ � Cku"kL1.�000/ C C j.L1; : : : ; Ln/j: (2.6)

Indeed, we define

L WD .�1L1; : : : ; �nLn/; u0" D u" � .L; x/;

and we show that
ku0"kL1.�00/ � Cku

0
"kL1.�000/; (2.7)

which yields (2.6) for a possibly larger constant C . The advantage now is that for all
x 2 �000 and all " � d.�000; @�/, by (1.3),

�i@iu
0
" � 0:

We consider the set

S WD
°
h D .h1; : : : ; hn/ W �ihi � 0;8i;max

i
jhi j � d.�00; @�/=2

±
:
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Notice that its volume jS j D 2�nd.�00; @�/n is bounded from below by 4�nd.�0; @�/n.
For every z0 2�00 and h 2 S , we estimate u0".z0 � h/ � u

0
".z0/ � u

0
".z0 C h/. Integrating

on S we obtain ˆ
S

u0".z0 � h/ dh � jS ju
0
".z0/ �

ˆ
S

u0".z0 C h/ dh;

which yields (2.6). We now make use of (2.6) in (2.5) to write, for C possibly larger than
the C and C 0 above,

lim sup
"!0

ˇ̌̌̌ˆ
�

.f  C g/u" dx

ˇ̌̌̌
� C.kf kL1.�/ C kDuk

p�1

Lp�1.�/
/
�

lim sup
"!0

ku"kL1.�000/ C j.L1; : : : ; Ln/j
�

� C.kf kL1.�/ C kDuk
p�1

Lp�1.�/
/.kukL1.�/ C j.L1; : : : ; Ln/j/: (2.8)

Hence by letting "! 0 in (2.2) and combining the lower bound for the left-hand side
(2.3)–(2.4) and the upper bound for the right-hand side (2.8), we obtain (1.4).

Before ending this section, we wish to record a connection between our Theorem 1.1
and the compensation results appearing in the very recent paper [19]. A first observation
in this regard, which will also be at the basis of the next sections, is to rewrite (1.7) as a
differential inclusion, namely to translate the differential problem (1.7) to that of finding a
solution w 2 W 1;1.�;R2/ to

Dw.x/ 2 K for a.e. x 2 �; (2.9)

for some suitable set K � R2�2. The set we will consider is

Kp WD

²�
x y

j.x; y/jp�2y �j.x; y/jp�2x

�
W x; y 2 R

³
: (2.10)

The equivalence between (1.7) and (2.9) is achieved once we interpret (1.7) in the equiva-
lent form:

0 D div.jDujp�2Du/ D curl.jDujp�2JDu/; where J D

�
0 1

�1 0

�
:

A simple application of Poincaré’s Lemma then yields the following equivalence.

Proposition 2.1. Let � � R2 be convex and u 2 W 1;max ¹1;p�1º.�/. Then

div.jDujp�2Du/ D 0

in the sense of distributions if and only if there exists v 2W 1;1.�/ such that w WD .u; v/ 2
W 1;1.�;R2/ solves

Dw 2 Kp a.e. in �: (2.11)

Moreover, for all q � max ¹1; p � 1º, u 2 W 1;q.�/ if and only if w 2 W 1; q
max ¹1;p�1º , and

there exist positive constants c1 < c2 such that

c1kukW 1;q.�/ � kwk
W
1;

q
max ¹1;p�1º .�;R2/

� c2kukW 1;q.�/: (2.12)
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We will sketch how a slightly simplified version of Theorem 1.1 for n D 2 can be
deduced from [19, Corollary 4.5]. This states that if

A D A.x/ D

�
a11.x/ a12.x/

a21.x/ a22.x/

�
2 C1c .R

2;R2�2/

with a11 � 0, a22 � 0 everywhere on R2, then

�

ˆ
R2

det.A/ � kcurlA1kL1.R2/kcurlA2kL1.R2/; (2.13)

where Ai denotes the i -th row of A. Let us define the convex sets

Y D

²
A D

�
a11 a12
a21 a22

�
W a11; a12; a21 � 0; a22 � 0

³
� X D

²
A D

�
a11 a12
a21 a22

�
W a11 � 0; a22 � 0

³
:

Suppose now that we are given u 2W 1;max ¹1;p�1º.�/ satisfying (1.2) for f D 0 and (1.3)
with �1 D �2 D 1,L1 DL2 D 0. Assumption (1.3) implies thatDw 2 Y �X , but in order
to apply [19, Corollary 4.5] we need to mollify and localizew. Consider�0 ��00 �� and
a cut-off function  2 C1c .�

00/ as in the proof above, and define w" WD w ? �". Finally,
let

A" WD  Dw ? �" D D. w"/ � w" ˝D :

We still have A".x/ 2 Y for all x 2 R2, and we estimate

lim sup
"!0C

kcurlA"kL1.R2/
(2.12)
� C

for some C D C.�00; kDukmax ¹1;p�1º
Lmax ¹1;p�1º.�/

/ > 0, Therefore, we can employ (2.13) to write

�

ˆ
�

det.A"/ dx � C: (2.14)

Moreover A" 2 Y implies det.A"/ � 0 in �. Thus we can use Fatou’s Lemma to conclude
from (2.14) that

�

ˆ
�

 2 det.Dw/ dx � C:

As Dw 2 Kp , we have det.Dw/ D �jDujp a.e. in �. This gives an alternative proof of
Theorem 1.1 in dimension n D 2.

3. Convex integration: outline of the strategy of the proof of Theorem 1.2

The first step in this type of convex integration is to rewrite (1.7) as a differential inclusion
as in Proposition 2.1. In order to find nontrivial solutionsw to (2.9), we can exploit Faraco’s
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staircase laminates. Given an open domain ! � R2, two distinct R2�2 matrices B;C with
det.B � C/ D 0 and � 2 .0; 1/, it is possible for all " > 0 to construct a highly oscillatory
Lipschitz and piecewise affine map f" which coincides with any given affine map with
gradient A D �B C .1 � �/C on @!, and such that

Df" 2 B".B/ [ B".C / a.e. on ! (3.1)

with a precise estimate on the set of points where Df" 2 B".B/ in terms of �; see
Lemma 4.1. The measure � D �ıB C .1 � �/ıC is called a laminate. By splitting B
in another rank-one direction, one obtains a probability measure supported on three (or
four) points, which is called a laminate of finite order (of order 2). For every laminate of
finite order, one can construct a nontrivial family of maps as f" above; see Definition 4.2
and Lemma 4.3.

A staircase laminate is an element �n of a sequence of laminates of finite order which
is constructed in the following way. Start from a point A1 2 R2�2. First A1 is split into
two points, B1 and E1, with B1 2 Kp and E1 an auxiliary point, again split into C1 WD A2
and D1 2 Kp . This yields

�1 D �B1ıB1 C �E1�A2ıA2 C �E1�D1ıD1 :

Now the error term A2 is again split with the same rule through points B2 2 Kp ,D2 2 Kp
and a new error term C2 WD A3, which allows us to define �2. Inductively, one finds �n.
In our specific problem, we need �n to fulfill

ˆ
R2�2
jX j1C" d�n.X/ <1;

ˆ
R2�2
jX j

p
p�1 d�n.X/ D1; (3.2)

and
�n.¹Anº/! 0 as n!1: (3.3)

Conditions (3.2) yield the desired integrability of the solution, while (3.3) tells us that the
measure �1 WD limn �n is supported precisely on Kp . Unfortunately, as we shall see, this
discussion needs some additions to yield an exact solution to the differential inclusion at
hand, but it is helpful to understand whether such a laminate can be found in a simpler
subset ofKp , for instanceKp \ diag.2/, where diag.2/ denotes the space of 2� 2 diagonal
matrices.

We have

Kp \ diag.2/ D
²�
x 0

0 �jxjp�2x

�
W x; y 2 R

³
:

Identify diagonal matrices with points .x; y/ of R2, so that for instance every point of
Kp \ diag.2/ is described by the graph .x;�jxjp�2x/. Notice that in the space of diagonal
matrices rank-one lines are precisely the horizontal and vertical lines. Take a sequence of
points Ai WD .xi ; yi / with

xiC1 > xi > 0; yiC1 > yi > 0; 8i 2 N;
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to be chosen later. We start by splitting A1 into a vertical direction until we reach a point
B1 2 Kp \ diag.2/, and the auxiliary point E1. Then E1 is split horizontally so that it lies
in the segment with endpoints A2 and D1 2 Kp \ diag.2/. This defines �1. Next, given
A3 D .x3; y3/, we reiterate the reasoning starting from .x2; y2/. By direct computation,
one sees that the first condition in (3.2) and condition (3.3) are then equivalent to finding
a suitable sequence ¹.xi ; yi /ºi2N as above with xi ; yi ! 1 as i ! 1 such that the
following holds, for some small " > 0:

lim
n!1

j.xn; yn/j
1C"

nY
kD1

xk�1 C y
1=.p�1/

k

xk C y
1=.p�1/

k

yk�1 C x
p�1

k�1
=.yk C x

p�1

k�1
/ <1:

Notice that for p D 2 this is impossible, which reflects the validity of Weyl’s Lemma. It
turns out that the choice xi D ai2, yi D i2.p�1/ for a suitable positive a that depends
on p yields the previous property, and one can directly check that this choice also yields
the second condition of (3.2). The parameter a is chosen so that a certain function Gp.a/
enjoys particular properties; see Section 5.1. Other sequences xi and yi are probably
correct, for instance xi and yi could be chosen to be of exponential growth, as long as
they contain this multiplicative parameter a. In our work, the careful choice is exploited in
Proposition 6.2, which in turn yields the crucial final estimates of Lemma 9.3.

As already mentioned, finding only one staircase laminate is, in general, not enough to
find an exact solution to (2.9). This is due to the fact that the maps constructed through
laminates introduce errors in their gradient distribution; see (3.1). This is the reason why
one considers in-approximations of the set Kp , using the terminology of [35], originally
due to M. Gromov. Namely, one needs to find a sequence of open sets Un which converge
in a suitable sense (see Lemma 7.2) to Kp with the additional property that every point
of Un is the barycenter of a laminate of finite order with suitable integrability properties,
supported in UnC1. The fact that these sets are open allows one to absorb the errors made
by property (3.1). Once one has a sequence of Lipschitz maps fn withDfn 2 Un a.e. which
in addition converge strongly in W 1;1 to a map f , it is possible to conclude that Df 2 Kp
a.e. The (subsequential) pointwise convergence of the gradients is crucial and is necessary
to exploit the convergence of ¹Unº to Kp . It is usually achieved with a mollification trick;
see Proposition 9.13 and the proof of Theorem 9.4.

We will not use the term in-approximation in this paper, but our whole effort is precisely
based on finding these open sets. The idea is to consider a family of staircase laminates
with initial point P 2Q � R2�2, withQ open. In this case, one obtains endpoints of these
laminates of finite order Ai ; Bi ; Ci ;Di , AiC1 D Ci , which depend on P . The definition of
these quantities is in Section 5. As above, Bi .P / 2Kp andDi .P / 2Kp for all P 2Q, but
we will actually need to consider staircase laminates with endpoints lying on the segments
connecting Ai , Bi and Ci ;Di , which do not reach exactly Bi and Di ; see the definition of
the maps ˆki;t of (5.16)–(5.17). This is necessary in order to deal with the errors of (3.1).
The definition of the laminates and the necessary quantitative estimates are the content of
Section 8. In order to find these open sets, we need to prove the openness of the mappings
Ai and ˆki;t . This is the most technical part of the paper, and occupies Section 6.
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Once the openness is shown, we will finally be able to prove the existence of a
solution to (2.11) in Section 9. To deduce that the solution w we construct has the required
degeneracy property ˆ

B

jDwj
p
p�1 dx D1 (3.4)

for all nonempty, open B � �, we will show that our construction yields w non-C 1 on
any open set, and we will deduce (3.4) from regularity results concerning the p-Laplace
equation. This is based on Lemma 7.1, which, together with the aforementioned Lemma 7.2,
constitutes Section 7.

4. Laminates of finite order

In this section we introduce elementary splittings and laminates of finite order. We say that
A;B 2 R2�2 are rank-one connected if

rank.A � B/ D 1:

Furthermore, we will denote by ŒA; B� the segment connecting A;B 2 R2�2, and we will
call it a rank-one segment if rank.A � B/ D 1. In that case, B � A is a rank-one direction
and the line containing ŒA; B� is a rank-one line. We have the following (see for instance
[3, Lemma 2.1]).

Lemma 4.1. Let A;B; C 2 R2�2 with rank.B � C/ D 1 and A D �B C .1 � �/C for
some � 2 Œ0; 1�. Let also � � R2 be a fixed open domain and b 2 R2. Then for every
" > 0, one can find a Lipschitz piecewise affine map f" W �! R2 such that

(1) f".x/ D f0.x/ D Ax C b on @� and kf" � f0k1 � ";

(2) Df".x/ 2 B".B/ [ B".C /;

(3) j¹x 2� WDf".x/ 2 B".B/ºj D �j�j and j¹x 2� WDf".x/ 2 B".C /ºj D .1� �/j�j.

Denote by P .U / the space of probability measures with support in U � R2�2.

Definition 4.2. Let �; � 2 P .U /, U � R2�2 open. Let � D
PN
iD1 �iıAi . We say that �

can be obtained from � via elementary splitting if for some i 2 ¹1; : : : ; N º, there exist
B;C 2 U and � 2 Œ0; 1� such that for some s 2 .0; 1/,

rank.B � C/ D 1; ŒB; C � � U; Ai D sB C .1 � s/C;

and
� D � C ��i .�ıAi C sıB C .1 � s/ıC /:

A measure � D
Pr
iD1 �iıAi 2 P .U / is called a laminate of finite order if there exist a

finite number of measures �1; : : : ; �r 2 P .U / such that

�1 D ıX ; �r D �

and �jC1 can be obtained from �j via elementary splitting for every j 2 ¹1; : : : ; N � 1º.



Non-classical solutions of the p-Laplace equation 11

Using the definition of elementary splitting to iterate Lemma 4.1 as in [35, Lemma 3.2],
one can prove the following.

Lemma 4.3. Let � � R2 be an open domain. Let U � R2�2 be an open set and let
� D

Pr
iD1 �iıAi 2 P .U / be a laminate of finite order with barycenter A 2 R2�2, i.e.

A D

ˆ
R2�2

X d�.X/:

Then for any b 2 R2 and " > 0, the map f0.x/ WD Ax C b admits on � an approximation
by piecewise affine, equi-Lipschitz maps f" 2 W 1;1.�;R2/ with the following properties:

(1) f".x/ D Ax C b on @� and kf" � Ax � bk1 � ";

(2) Df".x/ 2
S
i B".Ai /;

(3) j¹x 2 � W Df".x/ 2 B".Ai /ºj D �i j�j for all i .

5. Definition of the main quantities

5.1. Choice of the sequences and coordinates

For any a > 0, consider the following sequence, which is increasing in i :

xi D ai
2
C x0; yi D i

2.p�1/
C y0; 8i � 0: (5.1)

Here a; x0 and y0 will be used as coordinates in our construction. Together with these, we
will need a fourth parameter w 2 R, as will be clear in the next subsection. The space of
parameters is, for any p > 1,

Q.c/ WD .c; 2c/ �

�
3

4
;
5

4

�
�

�
3

4
;
5

4

�
�

�
3

4
;
5

4

�
:

The parameter c > 0 will be chosen small if p > 2 and large if p < 2. Instead of fixing c
here, we will update it in various technical results of the next sections. We introduce a
function that will be crucial in the following:

Gp.a/ D
a

aC 1
C .p � 1/

1

ap�1 C 1
: (5.2)

We start introducing conditions on c: in particular, we claim that the inequality

max ¹1; p � 1º < Gp.a/ < max ¹1; p � 1º C 1=2 for every a 2 Œc; 2c� (5.3)

holds for c sufficiently small if p > 2 and for c sufficiently large if 1 < p < 2.

5.1.1. The case p > 2. The (right) derivative of c 7! Gp.c/ at 0 is 1. Hence, Gp.c/ is
strictly increasing in a neighborhood of 0, and since Gp.0/ D p � 1, for c sufficiently
small we have

p � 1 < Gp.c/ � Gp.a/ � Gp.2c/ < p � 1=2; 8a 2 Œc; 2c�: (5.4)
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5.1.2. The case 1 < p < 2. We have limc!1Gp.c/ D 1 and for all c sufficiently large,
Gp.c/ is decreasing. Indeed,

d

dc
Gp.c/ D

1

.c C 1/2
� .p � 1/2

cp�2

.cp�1 C 1/2

D
cp�2

.cp�1 C 1/2

�
.cp�1 C 1/2

cp�2.c C 1/2
� .p � 1/2

�
:

As 1 < p < 2, limc!1.
.cp�1C1/2

cp�2.cC1/2
� .p � 1/2/ D �.p � 1/2 < 0. Thus, we can take c

sufficiently large that

1 < Gp.2c/ � Gp.a/ � Gp.c/ < 3=2; 8a 2 Œc; 2c�: (5.5)

Remark 5.1. The function Gp.a/ behaves very differently for p D 2 and p ¤ 2. The
strict inequalities in (5.3) are the key to the convergence of some quantities in Section 9.
If p D 2 instead, then Gp.a/ � 1 for all a and our strategy fails, as expected in view of
Weyl’s Lemma recalled in the introduction.

5.2. Parametrization of the laminates

Let p 2 .1;1/ be fixed and recall that

Kp D

²�
x y

j.x; y/jp�2y �j.x; y/jp�2x

�
W x; y 2 R

³
:

We denote points of Q.c/ by P , but we will almost always drop the dependence of the
functions xi ; yi ; vi ; zi , etc., on P . For readability, we also introduce the functions

hw.x/ D j.x; w/j
p�2w; gw.x/ D j.x; w/j

p�2x:

The counterexample is built in an inductive way. As explained in Section 3, given

Ai .P / D

�
xi�1 w

zi�1 yi�1

�
; w ¤ 0;

we need to split it into points Bi ; Di ; Ci D AiC1 where Bi ; Di 2 Kp and AiC1 is the
next step of the iteration. Here, ¹xiº and ¹yiº are the sequences of functions introduced in
Section 5.1, while zi cannot be chosen, and will instead be built during the construction of
the laminates. We start by considering

Ai .P / WD

�
xi�1 w

zi�1 yi�1

�
: (5.6)

Split it into the rank-one direction �
0 0

m n

�
for some suitable m; n 2 R, and call the endpoints Bi and Ei . We require that Bi 2 Kp
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and Ei has .2; 2/ component equal to yi . Simple computations show that then Bi and Ei
are

Bi .P / WD

�
xi�1 w

hw.xi�1/ �gw.xi�1/

�
2 Kp; Ei .P / WD

�
xi�1 w

vi yi

�
; (5.7)

where

vi D
yi C gw.xi�1/

yi�1 C gw.xi�1/
zi�1 �

yi � yi�1

yi�1 C gw.xi�1/
hw.xi�1/: (5.8)

In particular, we can write
Ai D �BiBi C �EiEi

with

�Bi D
yi � yi�1

yi C gw.xi�1/
; �Ei D

yi�1 C gw.xi�1/

yi C gw.xi�1/
: (5.9)

We further split Ei into the rank-one direction�
m0 0

n0 0

�
for suitable m0; n0 2 R, in order to reach the endpoints

Ci .P / D AiC1.P / D

�
xi w

zi yi

�
; Di .P / WD

�
�g�1w .yi / w

hw.g
�1
w .yi // yi

�
2 Kp: (5.10)

We have Ei D �CiCi C �DiDi for

�Ci D
xi�1 C g

�1
w .yi /

xi C g�1w .yi /
; �Di D

xi � xi�1

xi C g�1w .yi /
: (5.11)

As above, zi is defined by the requirements Ci .P / D AiC1.P / and Di .P / 2 Kp:

zi .P / D
xi C g

�1
w .yi /

xi�1 C g�1w .yi /
vi �

xi � xi�1

xi�1 C g�1w .yi /
hw.g

�1
w .yi //: (5.12)

Notice, though, that we have the freedom of choosing z0, which we will fix as a function
z0 D z0.P / in Section 6.1.

Remark 5.2. By construction, the probability measure

� D �Bi .P /ıBi .P / C �Ei .P /�Di .P /ıDi .P / C �Ei .P /�Ci .P /ıCi .P /

is a laminate of finite order for all P 2Q.c/ (see Definition 4.2). This fact will be exploited
in Section 8.

To conclude, we introduce maps that will be useful in our constructions. For t 2 Œ0; 1�
and P 2 Q.c/, define

ˆ1i;t .a; x0; y0; w/ WD Ai .P /C t�Ei .P /.Bi .P / �Ei .P // 2 R2�2; (5.13)

ˆ2i;t .a; x0; y0; w/ WD Ei .P /C t�Ci .P /.Di .P / � Ci .P // 2 R2�2: (5.14)
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Notice that for t 2 .0; 1/ the maps ˆ1i;t and ˆ2i;t interpolate between the known maps

ˆ1i;0.P /DAi .P /; ˆ2i;0.P /DEi .P /; ˆ1i;1.P /DBi .P /; ˆ2i;1DDi .P /: (5.15)

More explicitly, we rewrite (5.13)–(5.14) as

ˆ1i;t .a; x0; y0; w/ WD

�
xi�1 w

zi�1 C t .hw.xi�1/ � zi�1/ yi�1 � t .yi�1 C gw.xi�1//

�
;

(5.16)

ˆ2i;t .a; x0; y0; w/ WD

�
xi�1 � t .g

�1
w .yi /C xi�1/ w

vi C t .hw.g
�1
w .yi // � vi / yi

�
: (5.17)

6. Openness of the mappings

The goal of this section is to show that the maps Ai and ˆki;t are well-defined, continuous
and open. These properties will be shown in Proposition 6.2.

6.1. Explicit formula for zi

For all i � 1, define

Si .P / WD

iY
`D1

x` C g
�1
w .y`/

x`�1 C g�1w .y`/

y` C gw.x`�1/

y`�1 C gw.x`�1/
; (6.1)

and for all ` � 1,

H`.P / WD H
1
` .P /CH

2
` .P /

WD
x` C g

�1
w .y`/

x`�1 C g�1w .y`/

y` � y`�1

y`�1 C gw.x`�1/
hw.x`�1/C

x` � x`�1

x`�1 C g�1w .y`/
hw.g

�1
w .y`//:

(6.2)

We can use formulas (5.8), (5.12) to find that

zi .P / D
xi C g

�1
w .yi /

xi�1 C g�1w .yi /

�
yi C gw.xi�1/

yi�1 C gw.xi�1/
zi�1 �

yi � yi�1

yi�1 C gw.xi�1/
hw.xi�1/

�
�

xi � xi�1

xi�1 C g�1w .yi /
hw.g

�1
w .yi //:

Using this formula recursively, we find an expression for zi .P /:

zi .P / D Si .P /z0 �

iX
`D1

H`.P /

iY
kD`C1

xk C g
�1
w .yk/

xk�1 C g�1w .yk/

yk C gw.xk�1/

yk�1 C gw.xk�1/

D Si .P /z0 � Si .P /

iX
`D1

H`.P /

S`.P /
D Si .P /

�
z0 �

iX
`D1

H`.P /

S`.P /

�
:
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Notice that we work with the convention
sY

kDr

pk D 1 (6.3)

if r > s and ¹pnºn is any sequence. We choose

z0 D z0.P / D

1X
`D1

H`.P /

S`.P /
:

This yields

zi .P / D Si .P /

1X
`DiC1

H`.P /

S`.P /
: (6.4)

This choice requires showing the convergence of
P1
`D1

H`.P /
S`.P /

, which will be proved in
Proposition 6.2 below, after having made some necessary estimates.

6.2. Sufficient conditions for the openness of the mappings

We are now interested in providing a sufficient condition to ensure that the mappings
AiC1; ˆ

k
i;t are open for all k D 1; 2; t 2 Œ0; 1/ and i � I for I large to be fixed later. To

do so, we wish to use the invariance of domain theorem (see [21, Theorem 2B.3]) that tells
us that we only need to check that the above maps are continuous injections. Continuity is
immediate for most of the components of the above maps, and it is only non-trivial for zi
and vi . It will be shown for zi in Proposition 6.2, and from this and (5.8) it readily follows
for vi too. We only need to verify injectivity. The estimates we need to show in order to
prove well-posedness and continuity of zi and the injectivity of the aforementioned maps
will be given in this section.

Lemma 6.1. Let Q.c/ D .c; 2c/ � .3
4
; 5
4
/ � .3

4
; 5
4
/ � .3

4
; 5
4
/ with c such that Proposi-

tion 6.2 (a) holds. If 1 < p ¤ 2 and if for some I � 2 and all i � I , the limit

.@azi � i
2@x0zi /.P / WD lim

s!0

zi .P C s.1;�i
2; 0; 0// � zi .P /

s

exists, is continuous on Q.c/ and

@azi .P / � i
2@x0zi .P / > 0; 8P 2 Q.c/; (6.5)

then, for all i � I , k D 1; 2 and t 2 Œ0; 1/, AiC1 and ˆkiC1;t are injective mappings and
hence AiC1.Q.c// and ˆkiC1;t .Q.c// are open sets.

Proof. By the above discussion, we only need to show the injectivity of the three mappings
at hand.

AiC1 is injective: Let Pj D .aj ; x
j
0 ; y

j
0 ; w

j / for j D 1; 2, and suppose that for some
i � I ,

AiC1.P1/ D AiC1.P2/: (6.6)
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We need to show that P1DP2. From (5.6), we immediately see that y10 D y
2
0 andw1Dw2.

Furthermore, from the equality

xi .P1/ D xi .P2/

we infer
a1i2 C x10 D a

2i2 C x20 ; i.e. x10 � x
2
0 D �i

2.a1 � a2/: (6.7)

Now consider the segment

�.s/ WD .a1; x10 ; y
1
0 ; w/C s.a

2
� a1; x20 � x

1
0 ; 0; 0/

D .a1; x10 ; y
1
0 ; w/C .a

2
� a1/s.1;�i2; 0; 0/:

As Q.c/ is convex, .�.s/; y0; w/ 2 Q.c/ for all s 2 Œ0; 1�. Moreover, by assumption (6.5),
t 7! zi .�.t// is a C 1 function. By (6.6), we can write

0 D zi .P1/ � zi .P2/ D

ˆ 1

0

d

dt
zi .�.t// dt

D .a2 � a1/

ˆ 1

0

Œ@azi .�.t// � i
2@x0zi .�.t//� dt:

Assumption (6.5) shows a1 D a2. Through (6.7) we also infer x10 D x
2
0 , which concludes

the proof.

ˆ1iC1;t is injective: Fix t 2 Œ0; 1/. Assume with the same notation as above thatˆ1iC1;t .P1/
D ˆ1iC1;t .P2/. Then by (5.16) we easily infer w1 D w2 and

a1i2 C x10 D a
2i2 C x20 :

Moreover, since t ¤ 1, equating the .2; 2/ components of ˆ1i;t .P1/ and ˆ1i;t .P2/, we also
find y10 D y20 . Since xi .P1/ D xi .P2/ and w1 D w2, the .2; 1/ component now gives
(again since t ¤ 1)

zi .P1/ D zi .P2/;

and we can conclude as in the previous case using (6.5).

ˆ2iC1;t is injective: Fix t 2 Œ0; 1/. Assume with the same notation as above thatˆ2iC1;t .P1/
D ˆ2iC1;t .P2/. Then from (5.17) we easily infer w1 D w2 and y10 D y20 . With these
observations, and the fact that t ¤ 1, equality of the .1; 1/ components yields once again

a1i2 C x10 D a
2i2 C x20 ;

and equality of the .2; 1/ components yields

viC1.P1/ D viC1.P2/: (6.8)

Combining these facts with (5.8), we easily see that (6.8) is equivalent to zi .P1/ D zi .P2/
and once again we conclude analogously to the first case.
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6.3. Computation of the derivatives of zi

From Lemma 6.1, we know that we need to compute the first order derivatives of zi . In
particular, let

ıi D @a � i
2@x0 :

Since

zi .P / D Si .P /

1X
`DiC1

H 1
`
.P /CH 2

`
.P /

S`.P /
;

and it is easy to see that

P 7!
Si .P /.H

1
`
.P /CH 2

`
.P //

S`.P /

is a smooth mapping, our aim is to estimate from above and below

ıi

�
Si .P /H`.P /

S`.P /

�
D ıi

�
Si .P /

S`.P /

�
.H 1

` .P /CH
2
` .P //

C
Si .P /

S`.P /
ıi .H

1
` .P /CH

2
` .P //: (6.9)

Repeatedly using the fact that

ıi

NY
iD1

fig
�1
i D

NY
iD1

fig
�1
i

NX
iD1

.f �1i ıifi � g
�1
i ıigi /;

we get

ıiH
1
` .P / D ıi

�
x` C g

�1
w .y`/

x`�1 C g�1w .y`/

y` � y`�1

y`�1 C gw.x`�1/
hw.x`�1/

�
D H 1

` .P /

�
ıix`

x`Cg�1w .y`/
�

ıix`�1

x`�1Cg�1w .y`/
C
h0w.x`�1/ıix`�1

hw.x`�1/
�
g0w.x`�1/ıix`�1

y`�1Cgw.x`�1/

�
D H 1

` .P /

�
ıi .x` � x`�1/

x` C g�1w .y`/
�

ıix`�1.x` � x`�1/

.x` C g�1w .y`//.x`�1 C g�1w .y`//

C
h0w.x`�1/ıix`�1

hw.x`�1/
�
g0w.x`�1/ıix`�1

y`�1 C gw.x`�1/

�
DW H 1

` .P /�
1
i;`; (6.10)

and

ıiH
2
` .P / D ıi

�
x` � x`�1

x`�1 C g�1w .y`/
hw.g

�1
w .y`//

�
D H 2

` .P /

�
ıi .x` � x`�1/

x` � x`�1
�

ıix`�1

x`�1 C g�1w .y`/

�
DW H 2

` .P /�
2
i;`: (6.11)
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Similarly, we get

ıi

�
Si .P /

S`.P /

�
D ıi

� Ỳ
kDiC1

xk�1 C g
�1
w .yk/

xk C g�1w .yk/

yk�1 C gw.xk�1/

yk C gw.xk�1/

�

D
Si

S`

X̀
rDiC1

�
�

ıixr

xr C g�1w .yr /
C

ıixr�1

xr�1 C g�1w .yr /

�
g0w.xr�1/ıixr�1

yr C gw.xr�1/
C

g0w.xr�1/ıixr�1

yr�1 C gw.xr�1/

�
D
Si

S`

X̀
rDiC1

�
�
ıi .xr � xr�1/

xr C g�1w .yr /
C

.xr � xr�1/ıixr�1

.xr�1 C g�1w .yr //.xr C g�1w .yr //

C
.yr � yr�1/g

0
w.xr�1/ıixr�1

.yr C gw.xr�1//.yr�1 C gw.xr�1//

�
DW

Si

S`
�i;`: (6.12)

Overall, with the newly defined �1
i;`
; �2
i;`
; �i;` introduced in (6.10)–(6.12), we obtain

ıizi D

1X
`DiC1

Si

S`
Œ�i;`H` CH

1
` �

1
i;` CH

2
` �

2
i;`�: (6.13)

6.4. Asymptotic behavior of the terms composing ıizi

Let us start by estimating �i;` (see (6.12)). Throughout this section, we will make a list of
claims concerning the asymptotics of the terms involved. We start by claiming that

�
ıi .xr � xr�1/

xr C g�1w .yr /
� �

2

aC 1

1

r
; (Asymp. 1)

xr � xr�1

.xr�1 C g�1w .yr //.xr C g�1w .yr //
�
1

r3
2a

.aC 1/2
; (Asymp. 2)

.yr � yr�1/g
0
w.xr�1/

.yr C gw.xr�1//.yr�1 C gw.xr�1//
�
1

r3
2.p � 1/2ap�2

.1C ap�1/2
: (Asymp. 3)

Let us explain the notation we used in the previous lines. Given two sequences ¹aj ºj�1
and ¹bj ºj�1 of functions defined on Q.c/, the symbol aj � bj means

sup
P2Q.c/

ˇ̌̌̌
aj .P /

bj .P /
� 1

ˇ̌̌̌
! 0 as j !1:

The proofs of (Asymp. 1)–(Asymp. 3), as well as of the following asymptotic estimates,
are easy and similar to each other. Therefore, let us only show (Asymp. 1). Using the
definition

j.g�1w .yr /; w/j
p�2g�1w .yr / D yr D r

2.p�1/
C y0;
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we see that

1C
y0

r2.p�1/
D

ˇ̌̌̌�
g�1w .yr /

r2
;
w

r2

�ˇ̌̌̌p�2
g�1w .yr /

r2
;

which shows that
g�1w .yr / � r

2: (6.14)

We can now prove (Asymp. 1) with the help of (6.14):

ıi .xr � xr�1/

xr C g�1w .yr /

r.aC 1/

2
D

r2 � .r � 1/2

aC x0r�2 C r�2g�1w .yr /

aC 1

2r

D
.2 � r�1/.aC 1/

2.aC x0r�2 C r�2g�1w .yr //
� 1:

Estimates (Asymp. 1)–(Asymp. 3) imply that if we define

Q�i;` WD
X̀
rDiC1

�
�

2

aC 1

1

r
C
.r � 1/2 � i2

r3
2a

.aC 1/2
C
.r � 1/2 � i2

r3
2.p � 1/2ap�2

.1C ap�1/2

�
and we fix " D ".c/ > 0, then if I D I.c; "/ 2 N is sufficiently large and i � I , then for
all P 2 Q.c/,

j�i;`.P / � Q�i;`.P /j � C"
X̀
rDiC1

�
1

r
C
.r � 1/2 � i2

r3

�
� C"

X̀
rDiC1

1

r
: (6.15)

Here and below, C D C.c/ > 0 is a constant depending solely on c > 0 (and on p, which
is fixed). This constant may change from line to line, but we will always denote it with the
same letter. We can further simplify (6.15) and Q�i;`. Indeed, by integral comparison, one
can see that, for all ` � i C 1 and ˛ > 0,ˇ̌̌̌ X̀

kDiC1

1

k
� ln

�
`

i C 1

�ˇ̌̌̌
�

1

i C 1
; (6.16)

ˇ̌̌̌ X̀
kDiC1

1

k˛C1
�
1

˛

�
1

.i C 1/˛
�
1

`˛

�ˇ̌̌̌
�

1

.i C 1/˛C1
: (6.17)

Furthermore, letting

N�i;` WD �
2

aC 1
ln
�

`

i C 1

�
C

�
ln
�

`

i C 1

�
C
i2

2

�
1

`2
�

1

.i C 1/2

���
2a

.aC 1/2
C
2.p � 1/2ap�2

.1C ap�1/2

�
; (6.18)

and using (6.16)–(6.17), we see that if I is sufficiently large, (6.15) becomes, for all
P 2 Q.c/ and i � I ,

j�i;`.P / � N�i;`.P /j � j�i;`.P / � Q�i;`.P /j C j Q�i;`.P / � N�i;`.P /j

� C

�
" ln

�
`

i C 1

�
C
1

i

�
� C"

�
ln
�

`

i C 1

�
C 1

�
: (6.19)
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Let us now turn to H 1
`

and H 2
`

:

H 1
` .P / D

x` C g
�1
w .y`/

x`�1 C g�1w .y`/

y` � y`�1

y`�1 C gw.x`�1/
hw.x`�1/

� 1 �
2.p � 1/

1C ap�1
1

`
� ap�2`2.p�2/w

DW NH 1
` .P /; (Asymp. 4)

H 2
` .P / D

x` � x`�1

x`�1 C g�1w .y`/
hw.g

�1
w .y`//

�
2a

aC 1

1

`
� `2.p�2/w

DW NH 2
` .P /: (Asymp. 5)

Hence
jH 1

` .P / �
NH 1
` .P /j C jH

2
` .P / �

NH 2
` .P /j � C"`

2.p�2/�1 (6.20)

for all ` � i C 1 provided i � I . Define also NH` WD NH 1
`
C NH 2

`
. We now turn to �1

i;`

and �2
i;`

. Similarly to the previous terms, we can compute the asymptotic behavior of each
of the summands in the definition of �1

i;`
; �2
i;`

, given in (6.10), (6.11). We introduce the
functions

N�1i;` WD
2

.1C a/`
�
2a..` � 1/2 � i2/

.aC 1/2`3
C
.p � 2/..` � 1/2 � i2/

a`2

�
.p � 1/ap�2

.1C ap�1/

.` � 1/2 � i2

`2
;

N�2i;` WD
1

a
�

1

1C a

.` � 1/2 � i2

`2
;

in which every summand is given by the asymptotic behavior of the corresponding term of
�1
i;`

and �2
i;`

. Then choosing I possibly larger, if i � I then for all P 2 Q.c/,

j�1i;`.P / � N�
1
i;`.P /j C j�

2
i;`.P / � N�

2
i;`.P /j � C"

�
1C

.` � 1/2 � i2

`2

�
� C": (6.21)

6.5. Asymptotic behavior of Si=S`

We claim that for all p 2 .1;1/ n ¹2º, if c satisfies (5.4)–(5.5), then for all " > 0 there
exists I D I."; c/ such that

sup
P2Q.c/

ˇ̌̌̌
Si .P /

S`.P /

�
`

i C 1

�2Gp.a/
� 1

ˇ̌̌̌
� " for all ` � 1 � i � I: (6.22)

For all p 2 .1;1/, we let

NSi;` D NSi;`.a/ WD

�
i C 1

`

�2Gp.a/
: (6.23)
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Fix " > 0. For ` � i C 1, we have

Si

S`
.P / D

Ỳ
kDiC1

xk�1 C g
�1
w .yk/

xk C g�1w .yk/

yk�1 C gw.xk�1/

yk C gw.xk�1/

D e
P`
kDiC1Œln.xk�1Cg

�1
w .yk//�ln.xkCg�1w .yk//�

� e
P`
kDiC1Œln.yk�1Cgw.xk�1//�ln.ykCgw.xk�1//�: (6.24)

Using a first order Taylor expansion and the concavity of the logarithm, we see that

xk�1 � xk

xk�1 C g�1w .yk/
� ln.xk�1Cg�1w .yk//� ln.xkCg�1w .yk//�

xk�1 � xk

xk C g�1w .yk/
: (6.25)

We claim that the first and last terms on (6.25) are both � 2a
aC1

1
k

up to lower order correc-
tions, namelyˇ̌̌̌

xk�1 � xk

xk�1 C g�1w .yk/
C

2a

aC 1

1

k

ˇ̌̌̌
C

ˇ̌̌̌
xk�1 � xk

xk�1 C g�1w .yk/
C

2a

aC 1

1

k

ˇ̌̌̌
�

C

k1Cmin ¹1;2.p�1/º
:

(6.26)

We estimate the first term on the left-hand side of (6.26); the second term can be treated
similarly or by comparing it with the first term. First, by the implicit function theorem, the
function w 7! g�1w .y/ is C 1 and

@w.g
�1
w .y// D �.p � 2/

wg�1w .y/

w2 C .p � 1/.g�1w .y//2
; 8w; y 2 R:

Therefore, for all P 2 Q.c/, by (6.14),

jg�1w .yk/ � g
�1
0 .yk/j � C=k

2; 8k � 1: (6.27)

Since g�10 .y/ D y1=.p�1/ for all y 2 RC, as follows from the definition of gw.x/, we
estimate

g�10 .yk/ � k
2
D .k2.p�1/ C y0/

1=.p�1/
� k2.p�1/

1=.p�1/

�

´
y
1=.p�1/
0 if p > 2;

Ck2.2�p/ if p < 2:
(6.28)

Hence, for all i C 1 � k � ` we writeˇ̌̌̌
xk�1 � xk

xk�1 C g�1w .yk/
C

2a

aC 1

1

k

ˇ̌̌̌
D a

ˇ̌̌̌
.�2k C 1/.aC 1/k C 2a.k � 1/2 C 2x0 C 2g

�1
w .yk/

.xk�1 C g�1w .yk//.aC 1/k

ˇ̌̌̌
� a
j�3ak C k C 2aC 2x0j C 2jg

�1
w .yk/ � g

�1
0 .yk/j C 2jg

�1
0 .yk/ � k

2j

.xk�1 C g�1w .yk//.aC 1/k

� C
k C kmax ¹0;2.2�p/º

k3
�

C

k1Cmin ¹1;2.p�1/º
:
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This proves the estimate of the first term in our claim (6.26). With (6.26) at hand we obtainˇ̌̌̌ X̀
kDiC1

Œln.xk�1 C g�1w .yk// � ln.xk C g�1w .yk//�C
2a

aC 1
ln
�
i C 1

`

�ˇ̌̌̌

�

ˇ̌̌̌ X̀
kDiC1

�
ln.xk�1 C g�1w .yk// � ln.xk C g�1w .yk//C

2a

.aC 1/k

�ˇ̌̌̌

C

ˇ̌̌̌
�

X̀
kDiC1

2a

.aC 1/k
C

2a

aC 1
ln
�
i C 1

`

�ˇ̌̌̌
(6.26);(6.16)
�

X̀
kDiC1

C

k1Cmin ¹1;2.p�1/º
C

C

i C 1

(6.17)
�

C

.i C 1/min ¹1;2.p�1/º
: (6.29)

Analogously, we can prove thatˇ̌̌̌ X̀
kDiC1

Œln.yk�1 C gw.xk�1// � ln.yk C gw.xk�1//�C .p � 1/
2

ap�1 C 1
ln
�
i C 1

`

�ˇ̌̌̌
�

C

.i C 1/min ¹1;2.p�1/º
: (6.30)

Estimates (6.29)–(6.30) combined with (6.24) and the definition of Gp.a/ (see (5.2)),
prove (6.22).

6.6. Estimates of ıizi

We now use our previous asymptotic estimates to bound ıizi in (6.13). We will observe
that the closeness estimates (6.19)–(6.22) of �i;` and N�i;`, Si=S` and NSi;`, H i

`
and NH i

`
,

�
j

i;`
and N�j

i;`
enable us to neglect the contributions of �i;` � N�i;`,

Si
S`
� NSi;`, H i

`
� NH i

`
,

�
j

i;`
� N�

j

i;`
in the computation of ıizi in (6.13). Indeed, these estimates imply that the

growth of �i;` is the same as the growth of N�i;`, and similarly for the other quantities. We
have

Œ�i;`H` CH
1
` �

1
i;` CH

2
` �

2
i;`� � Œ N�i;`

NH` C NH
1
` N�

1
i;` C

NH 2
` N�

2
i;`�

D .�i;` � N�i;`/H` CH
1
` .�

1
i;` � N�

1
i;`/CH

2
` .�

2
i;` � N�

2
i;`/C N�i;`.H` �

NH`/

C .H 1
` �

NH 1
` / N�

1
i;` C .H

2
` �

NH 2
` / N�

2
i;`:

Thus, by the triangle inequality, (6.19)–(6.21) yield, uniformly in P 2 Q.c/,

jŒ�i;`H` CH
1
` �

1
i;` CH

2
` �

2
i;`� � Œ N�i;`

NH` C NH
1
` N�

1
i;` C

NH 2
` N�

2
i;`�j

� C"

�
1C ln

�
`

i C 1

��
`2.p�2/�1: (6.31)
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We notice moreover, using the definitions of N�i;`; NH` and N�i;`, that

j N�i;` NH` C NH
1
` N�

1
i;` C

NH 2
` N�

2
i;`j � j N�i;`

NH`j C j NH
1
` N�

1
i;` C

NH 2
` N�

2
i;`j

� C

�
1C ln

�
`

i C 1

��
`2.p�2/�1: (6.32)

Similarly, exploiting (6.22) and (6.31)–(6.32), we can estimate, uniformly in P 2 Q.c/,ˇ̌̌̌
Si

S`
Œ�i;`H` CH

1
` �

1
i;` CH

2
` �

2
i;`� �

NSi;`Œ N�i;` NH` C NH
1
` N�

1
i;` C

NH 2
` N�

2
i;`�

ˇ̌̌̌
� C" NSi;`

�
1C ln

�
`

i C 1

��
`2.p�2/�1: (6.33)

We now need to divide into the cases p > 2 and 1 < p < 2. We will show that for all
c sufficiently small if p > 2, and c sufficiently large if p < 2, and for a possibly larger I ,� 1X

`DiC1

Si

S`
.�i;`H` CH

1
` �

1
i;` CH

2
` �

2
i;`/

�
.P / � C 0i2.p�2/�1 (6.34)

for all i C 1 � I , for a positive constant C 0 > 0. Before dividing into the two cases, we
use integral comparison to find that, for all i � 2 and a 2 Œc; 2c�, with c chosen such that
(5.4)–(5.5) hold,ˇ̌̌̌ 1X
`DiC1

NSi;` ln
�

`

i C 1

�
`2.p�2/�1 �

.i C 1/2.p�2/

4.Gp.a/ � p C 2/2

ˇ̌̌̌
� 2 ln.i C 1/.i C 1/2.p�2/�1;

(6.35)ˇ̌̌̌ 1X
`DiC1

NSi;`

�
i2

.i C 1/2
�
i2

`2

�
`2.p�2/�1

�

�
1

2.2 � p/C 2Gp.a/
�

1

2.2 � p/C 2Gp.a/C 2

�
.i C 1/2.p�2/

ˇ̌̌̌
� 10.i C 1/2.p�2/�1; (6.36)ˇ̌̌̌ 1X

`DiC1

NSi;``
2.p�2/�1 .` � 1/

2 � i2

`2

�

�
1

2.2 � p/C 2Gp.a/
�

1

2.2 � p/C 2Gp.a/C 2

�
.i C 1/2.p�2/

ˇ̌̌̌
� 10.i C 1/2.p�2/�1: (6.37)

The case p > 2: According to (5.3), (6.17), (6.33) and (6.35), to show (6.34) it is sufficient
to prove

1X
`DiC1

NSi;`. N�i;` NH` C NH
1
` N�

1
i;` C

NH 2
` N�

2
i;`/.P / � C

0i2.p�2/: (6.38)
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We see that there exists a constantL> 0 (which may change from line to line), independent
of c once we choose for instance c < 1, such that for all ` � i C 1 � 2 and P 2 Q.c/,

j NH` N�i;`j.P / � c
min ¹1;p�2ºL

�
1C ln

�
`

i C 1

��
`2.p�2/�1: (6.39)

On the other hand, if m D minQ.c/
2w
aC1

> 0, then

. NH 1
` N�

1
i;` C

NH 2
` N�

2
i;`/.P / �

2w

aC 1
`2.p�2/�1 � Lcmin ¹1;p�1;2.p�2/º`2.p�2/�1

� .m � Lcmin ¹1;2.p�2/º/`2.p�2/�1: (6.40)

Combining (6.17), (6.35), (6.39), (6.40) with (5.3) we can estimate, for all P 2 Q.c/,

1X
`DiC1

NSi;`. N�i;` NH` C NH
1
` N�

1
i;` C

NH 2
` N�

2
i;`/.P /

� .L1m � L2.c
min ¹1;2.p�2/º

C cmin ¹1;p�2º//.i C 1/2.p�2/

for some constants L1.p/; L2.p/ > 0. If c and " of (6.33) are chosen sufficiently small,
the last inequality implies (6.38) and hence (6.34).

The case 1 < p < 2: We wish to show that for all c sufficiently large there exists a constant
C 0 D C 0.c/ > 0 such that for all P 2 Q.c/ and all i � I D I.c/,

1X
`DiC1

a NSi;`. N�i;` NH` C NH
1
` N�

1
i;` C

NH 2
` N�

2
i;`/.P / � C

0i2.p�2/: (6.41)

This would show, since a 2 .c; 2c/, that

1X
`DiC1

NSi;`. N�i;` NH` C NH
1
` N�

1
i;` C

NH 2
` N�

2
i;`/.P / �

C 0

2c
i2.p�2/:

As above, by (5.3), (6.33) and (6.35), the latter would imply (6.34), once " of (6.33) is
chosen small enough in terms of C 0

2c
. To show (6.41), we denote by gk.a/, for k 2 N,

continuous functions gk W RC ! R such that for all a sufficiently large,

jgk.a/j �
Lk

ap�1

for some constant Lk > 0. With this notation, we rewrite for all a 2 RC, ` � i C 1 � 1,

a N�i;` D
a2

.1C a/2

�
i2

`2
�

i2

.i C 1/2

�
C g1.a/ ln

�
`

i C 1

�
C g2.a/

�
i2

`2
�

i2

.i C 1/2

�
;

and
NH` D

2aw

aC 1
`2.p�2/�1 C g3.a/`

2.p�2/�1:
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Therefore,

a N�i;` NH` D
2a3w

.1C a/3
`2.p�2/�1

�
i2

`2
�

i2

.i C 1/2

�
C

�
g5.a/ ln

�
`

i C 1

�
C g6.a/

�
i2

`2
�

i2

.i C 1/2

��
`2.p�2/�1: (6.42)

The term a. NH 1
`
N�1
i;`
C NH 2

`
N�2
i;`
/ is more complicated, but it admits a similar representation:

a. NH 1
` N�

1
i;` C

NH 2
` N�

2
i;`/ D

2aw

aC 1
`2.p�2/�1 �

2a2w

.aC 1/2
`2.p�2/�1

.` � 1/2 � i2

`2

C g6.a/`
2.p�2/�2

C .g7.a/C `g8.a//`
2.p�2/�2 .` � 1/

2 � i2

`2
: (6.43)

Now we can exploit (6.17), (6.42), (6.43), (6.36), (6.37), and the definition of NSi;` in (6.23)
to write

1X
`DiC1

a NSi;` N�i;` NH`.P / D f1.a/w.i C 1/
2.p�2/

CR1;i .a; w/

D

�
1

2.2 � p/C 2C 2Gp.a/
�

1

2.2 � p/C 2Gp.a/

�
2a3w

.1C a/3
.i C 1/2.p�2/

CR1;i .a; w/;

and

1X
`DiC1

a NSi;`. NH
1
` N�

1
i;` C

NH 2
` N�

2
i;`/.P /

D f2.a/w.i C 1/
2.p�2/

Cf3.a/w.i C 1/
2.p�2/

CR2;i .a; w/

D

�
1

2.2�p/C 2Gp.a/

�
2aw.i C 1/2.p�2/

aC 1

�

�
1

2.2�p/C 2Gp.a/
�

1

2.2�p/C 2C 2Gp.a/

�
2a2w.i C 1/2.p�2/

.aC 1/2
CR2;i .a; w/:

Here, Rj;i .a;w/ for all j D 1; 2 and i 2 N are continuous functions with the property that

jR1;i .a; w/j C jR2;i .a; w/j �
k.i C 1/2.p�2/

ap�1
;

for all i 2 N, w 2 .3
4
; 5
4
/ and a > 0 sufficiently large, and for a positive constant k depend-

ing solely on p once c is chosen large enough. Notice that R3;i .a; w/ WD Ra;i .a; w/C
R2;i .a; w/ enjoys the same bounds. As w 2 .3

4
; 5
4
/, in order to show (6.41), it is sufficient

to prove that
lim inf
a!1

Œf1.a/C f2.a/C f3.a/� > 0:
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A direct computation that exploits lima!1Gp.a/ D 1 (see (5.2)) shows that

lim
a!1

Œf1.a/C f2.a/C f3.a/� D
2.2 � p/

.2.2 � p/C 4/.2.2 � p/C 2/
;

which is positive for all p < 2. This concludes the proof of (6.41).
We collect the results we just obtained in the following proposition.

Proposition 6.2. Let p 2 .1;1/ n ¹2º and Si , H`, �
j

i;`
, �i;` be defined in (6.1), (6.2),

(6.10), (6.11), (6.12) respectively. Recall that Q.c/ D .c; 2c/ � .3
4
; 5
4
/ � .3

4
; 5
4
/ � .3

4
; 5
4
/.

Then for all c > 0 sufficiently small if p > 2 and c > 0 sufficiently large if p < 2, there
exists I D I.c/ 2 N such that for all i � I :

(a) The convergence of the series
P1
`D1

H`.P /
S`.P /

is uniform in Q.c/. In particular,

P 7! zi .P / D Si .P /

1X
`DiC1

H`.P /

S`.P /

is well-defined for all P 2 Q.c/ and continuous on Q.c/.

(b) supP2Q.c/ jzi .P /j � Ci
2.p�2/ for all i � 1, and for some positive C > 0;

(c) The convergence of the series
P1
`D1

1
S`
ŒH`�i;` CCH

1
`
�1
i;`
CH 2

`
�2
i;`
� is uniform in

Q.c/. In particular,
.@azi � i

2@x0zi /.P /

exists at all points P 2 Q.c/, is continuous, and is represented precisely by

.@azi � i
2@x0zi /.P / D

1X
`D1

Si

S`
ŒH`�i;` CH

1
` �

1
i;` CH

2
` �

2
i;`�:

(d) For all P 2 Q.c/,
.@azi � i

2@x0zi /.P / > 0:

In particular, the assumptions of Lemma 6.1 hold true and the mappings ˆ1i;t ; ˆ
2
i;t ; Ai

are open for all t 2 Œ0; 1/ and i � I .

Proof. We see from (6.20) that

max
P2Q.c/

jH`.P /j � C`
2.p�2/�1: (6.44)

Having chosen c such that (5.3) hold, for all P D .a; x0; y0; w/ 2 Q.c/ we estimateˇ̌̌̌
Si .P /

S`.P /
H`.P /

ˇ̌̌̌
(6.22);(6.44)
� C

�
i C 1

`

�2Gp.a/
`2.p�2/�1

(5.3)
� C

�
i C 1

`

�2max ¹1;p�1º

`2.p�2/�1

for all ` � i C 1. Through (6.4) and (6.17), we conclude that zi is well-defined and
continuous for all i � 0, which is (a), and that it enjoys property (b). Finally, (c) readily
follows from (6.32)–(6.33), (6.22) and (6.17), (6.35), and (d) is the content of (6.34).
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In what follows, c is chosen so that (5.4)–(5.5) and Proposition 6.2 hold, and will be
considered a fixed parameter.

7. Some further properties of ˆk
i;t

and Ai

As in the previous section, the domain of the maps we will consider is Q.c/, where c > 0
is fixed by (5.4)–(5.5) and Proposition 6.2. We also let I D I.c/ be the index for which
the conclusion of the aforementioned proposition holds. This index will be made (possibly)
larger in the next lemma, but will still be denoted by I . Denote, as before, points of Q.c/
by P .

Lemma 7.1. There exists 0 < t0 D t0.c/ < 1 such that if t 2 Œt0; 1�, the sets

ˆ1i1;t .Q.c//; ˆ1i2;t .Q.c//; Ai3.Q.c//

are pairwise disjoint for all i1; i2; i3 � I , where I D I.c/ may be larger than the one of
Proposition 6.2.

Proof. We first show the following auxiliary statements. There exist k > 0, I 2 N and
0 < t0 < 1 such that for all i � I , t 2 Œt0; 1� and P D .a; x0; y0; w/ 2 Q.c/,

ˆ1i;t .x0; y0; z0; w/ �

²�
x w

z y

�
2 R2�2 W x � k; y � �k

³
; (7.1)

ˆ2i;t .x0; y0; z0; w/ �

²�
x w

z y

�
2 R2�2 W x � �k; y � k

³
; (7.2)

Ai .a; x0; y0; w/ �

²�
x w

z y

�
2 R2�2 W x � k; y � k

³
: (7.3)

Proof of (7.1). We only need to show that yi�1 � t .yi�1 C gw.xi�1// is (uniformly)
negative for all P 2 Q.c/ if t0 is sufficiently close to 1 and i � I . Indeed, the fact that
P 7! xi�1.P / is (uniformly) positive is an immediate consequence of the definition. We
have

yi�1 � t .yi�1 C gw.xi�1//

D .1 � t /
�
.i � 1/2.p�1/ C y0

�
� t j.a.i � 1/2 C x0; w/j

p�2.a.i � 1/2 C x0/:

If we divide the above by i2.p�1/ and let i !1, we obtain, uniformly in P 2 Q.c/,

.1 � t / � ap�1t;

and we can estimate
.1 � t / � ap�1t � .1 � t / � cp�1t:

Therefore, if t0 is sufficiently close to 1, we see that (7.1) holds for I large.
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Proof of (7.2). Analogously to the proof of (7.1), we find that yi is always positive, and
hence we shall only prove that xi�1 � t .g�1w .yi /C xi�1/ is (uniformly) negative for all
P 2 Q.c/ if t0 is sufficiently close to 1 and i � I . To do so, we write

xi�1 � t .g
�1
w .yi / � xi�1/ D .1 � t /xi�1 � tg

�1
w .yi /:

Recalling (6.14), we divide the above by i2 and we let i !1 to obtain, uniformly in
P 2 Q.c/,

.1 � t /a � t � .1 � t /2c � t:

Therefore, if t0 is sufficiently close to 1, (7.2) holds for I large and uniformly in P 2Q.c/.

Proof of (7.3). This is immediate, since ¹xiº; ¹yiº are uniformly positive by their defini-
tion.

Clearly, (7.1)–(7.3) imply that

ˆ1i;t .Q.c// \ˆ
2
j;t .Q.c// D ;;

ˆ1i;t .Q.c// \ Aj .Q.c// D ;; ˆ2i;t .Q.c// \ Aj .Q.c// D ;

provided i; j � I , t 2 Œt0; 1�, I is large enough and t0 is close enough to 1. To conclude
the proof of the lemma, we now claim that if I is sufficiently large, then for all i > j > I ,

xi .x0/ > xj .x
0
0/C 1; yi .y0/ > yj .y

0
0/C 1; 8i > j � I; 8x0; y0; x

0
0; y
0
0 2

�
3
4
; 5
4

�
:

(7.4)

Using the definitions of ˆki;t , it is easy to see that (7.4) implies that for all k D 1; 2,
i > j � I and t 2 Œt0; 1�,

d.ˆki;t .Q.c//; ˆ
k
j;t .Q.c/// � 1; d.Ai .Q.c//; Aj .Q.c/// � 1; (7.5)

which yields the claim.

We only need to show (7.4). We can estimate

ai2 � aj 2 � 2aj.i � j / � 2aj � 2aI; 8i > j � I:

Thus, recalling that x0; x00 2 .
3
4
; 5
4
/,

xi .x0/ � xj .x
0
0/ D a.i

2
� j 2/C x0 � x

0
0 � 2aI � 1=2 � 2cI � 1=2:

If I D I.c/ > 0 is sufficiently large, we see that the first part of (7.4) holds. To show
the second part, i.e. the analogous estimate for yi , we repeat the same proof with small
modifications.

We end this section with one last technical lemma. First, define, for k D 1; 2, i; q � 1
and tq WD 1 � 1�t0

2q
,

U ki;q WD ˆ
k
i;tq
.Q.c// and U 3i WD Ai .Q.c//:
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The reason to update tq ! 1 is that, as q !1, we wish the sets U ki;q to converge to
subsets of Kp in a sense that is made rigorous in the next lemma. Recall that I 2 N is a
sufficiently large index so that Proposition 6.2 holds together with Lemma 7.1. Finally, for
n � 1 set

Vn WD

ICn�1[
iDI

U 1i;ICn�1 [

ICn�1[
iDI

U 2i;ICn�1 [ U
3
ICn: (7.6)

Notice that by Lemma 6.1 and Proposition 6.2, each of the above sets is open and, by
Lemma 7.1, the union defining Vn is disjoint, for all n � I C 1. We will still need to update
the value of I in some of the next results. We modify the definition of Vn accordingly.

Lemma 7.2. Let Zn 2 Vn for all n � 1. Suppose that a subsequence ¹Znj ºj converges
to Z. Then

Z 2

1[
iDI

ˆ1i;1.Q.c// [

1[
iDI

ˆ2i;1.Q.c//
(5.15)
D

1[
iDI

Bi .Q.c// [

1[
iDI

Di .Q.c//
(5.7);(5.10)
� Kp:

(7.7)

Proof. Denote by BR.0/ � R2�2 the ball of radius R centered at 0 2 R2�2. Since

inf
P2Q.c/

xi .P /!1 and inf
P2Q.c/

yi .P /!1

as i !1, we see that given any R > 0,

Ai .Q.c// \ BR.0/ D ;; ˆki;t .Q.c// \ BR.0/ D ; (7.8)

for all t � t0, k D 1; 2 and i � NI D NI.R/ � 1. Since ¹Znj ºj is convergent, it is bounded,
and from Znj 2 Vnj for all j , and (7.8), we infer

Znj 2

N[
iDI

U 1i;nj [

N[
iDI

U 2i;nj � Vnj ; 8j � J;

for some large J; N , the latter independent of j . Now, for either k D 1 or k D 2,
we can select a (nonrelabeled) subsequence of ¹Znj º with the property that, for some
i0 2 ¹I; : : : ; N º,

Znj 2 U
k
i0;nj

:

Let k D 1 for simplicity; otherwise the proof is analogous. By definition of U ki0;nj , we find

a sequence Pj D .aj ; x
j
0 ; y

j
0 ; wj / 2 Q.c/ such that, for all j 2 N,

Znj D ˆ
1
i0;tnj

.Pj /:

Up to passing to a subsequence, the limit limj Pj D P 2Q.c/ exists. Now observe that the
map .Œ0; 1��Q.c// 3 .t; a;x0; y0;w/ 7!ˆki0;t .x0; y0; z0;w/ is continuous for k D 1;2 on
Q.c/. This can be inferred from the definitions (5.16)–(5.17), the continuity of zi , proved
in Propositions 6.2, and (5.8). The continuity implies that Z D ˆ1i0;1.P / and concludes
the proof.
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8. Properties of the laminates

The aim of this section is to build the laminates that will be used in the proof of the
inductive proposition of Section 9. In what follows, c is a fixed parameter that has been
chosen in (5.4)–(5.5) and Proposition 6.2. Moreover,

tq D 1 �
1 � t0

2q

for all q 2 N, for t0 of Lemma 7.1. Finally, we denote by I D I.c/ 2 N the index for
which Proposition 6.2 and Lemma 7.1 hold, for all i � I . We will update this index a few
more times in this section, and this will fix I for the last section.

Lemma 8.1. Let i; q � 1. For allM 2Q.c/, the matrixˆ1i;tq .M/ belongs to the rank-one
segment Œˆ1i;tqC1.M/;Ai .M/�:

ˆ1i;tq .M/ D �1;qˆ
1
i;tqC1

.M/C �2;qAi .M/

with
�1;q D

tq

tqC1
and �2;q D 1 �

tq

tqC1
:

Proof. By the definitions, we immediately see that det.ˆ1i;tqC1.M/�Ai .M//D 0. There-
fore Œˆ1i;tqC1.M/;Ai .M/� is a rank-one segment. Using (5.13), we compute

�1;qˆ
1
i;tqC1

.M/C �2;qAi .M/

D
tq

tqC1
.Ai .M/C tqC1�Ei .M/.Bi .M/ �Ei .M///C

tqC1 � tq

tqC1
Ai .M/

D Ai .M/C tq�Ei .M/.Bi .M/ �Ei .M//

D ˆ1i;tq .M/:

Lemma 8.2. Let i; q � 1. For allM 2Q.c/, the matrixˆ2i;tq .M/ belongs to the rank-one
segment Œˆ2i;tqC1.M/; Ci .M/�:

ˆ2i;tq .M/ D �1i;q.M/ˆ2i;tqC1.M/C �2i;q.M/Ci .M/ (8.1)

with

�1i;q.M/ D
�Di .M/ C tq�Ci .M/

�Di .M/ C tqC1�Ci .M/

and �2i;q.M/ D
.tqC1 � tq/�Ci .M/

�Di .M/ C tqC1�Ci .M/

:

Furthermore, if I is sufficiently large, there exists a dimensional constant C > 0 such that
for all q � I , i � 1 and M 2 Q.c/,

1 �
C

2q
� �1i;q.M/ < 1 and 0 < �2i;q.M/ �

C

2q
: (8.2)
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Proof. All the assertions can be checked by direct computation. First, using the definitions,
we see that det.ˆ2i;tqC1.M/�Ci .M//D 0. Therefore, Œˆ2i;tqC1.M/;Ci .M/� is a rank-one
segment. Moreover, using (5.14), one directly checks (8.1). We only need to show (8.2).
The first estimate follows from the second and the fact that �1i;q C �

2
i;q D 1. Recall that

tq D 1 �
1�t0
2q

< 1. To show the second estimate of (8.2), we simply write

0 < �2i;q.M/ D .tqC1 � tq/
�Ci .M/

�Di .M/ C tqC1�Ci .M/

�
tqC1 � tq

tqC1
D

1 � t0

tqC12qC1
:

Since limq!1 tq D 1, we conclude the validity of (8.2).

Proposition 8.3. Let q � j2 � 2; j2 > j1 � 2. Let moreover P 2 Q.c/. Then Aj1.P / is
the barycenter of a laminate of finite order �j1;j2;q.P / with

spt.�j1;j2;q.P // �
j2�1[
kDj1

U 1k;q [

j2�1[
kDj1

U 2k;q [ U
3
j2
: (8.3)

Furthermore,
0 < �j1;j2;q.P /.U

3
j2
/: (8.4)

The proof of the previous proposition is inductive. We record the base case separately.

Lemma 8.4. Let i � I C 1, q � I , and P 2 Q.c/. Then Ai .P / is the barycenter of the
laminate of finite order

�i;q.P / WD �
1
i;q.P /ıˆ1

i;tq
.P / C �

2
i;q.P /ıˆ2

i;tq
.P / C �

3
i;q.P /ıAiC1.P /;

where

�1i;q.P / D
�Bi .P /

�Bi .P / C tq�Ei .P /
; (8.5)

�2i;q.P / D
tq�Ei .P /

�Bi .P / C tq�Ei .P /

�Di .P /

tq�Ci .P / C �Di .P /
; (8.6)

�3i;q.P / D
tq�Ei .P /

�Bi .P / C tq�Ei .P /

tq�Ci .P /

tq�Ci .P / C �Di .P /
: (8.7)

Furthermore, independently of P , if I is large enough, there exist positive constants C
and k1 < k2 such that

k1

i
� �1i;q.P / �

k2

i
; (8.8)

k1

i
� �2i;q.P / �

k2

i
; (8.9)

0 < �3i;q.P / � e
C=i
 e�2min ¹Gp.c/;Gp.2c/º=i ; (8.10)

where 
 D 1Cmin ¹1; 2.p � 1/º.
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Proof. From ıAi .P / we pass to �i;q.P / via two consecutive elementary splittings, in the
sense of Definition 4.2. These splittings were already mentioned when introducing the
maps under consideration (see Remark 5.2). First, we split Ai .P / into a rank-one segment
with direction Bi .P /�Ei .P /. The segment has endpoints Ei .P / and ˆ1i;tq .P /. Then we
split again ıEi .P / into a rank-one segment with direction Ci .P / �Di .P /, with endpoints
Ci .P / D AiC1.P / and ˆ2i;tq .P /. Weights (8.5)–(8.7) are obtained via direct computation.

We now turn to the proof of (8.8)–(8.10). First, we notice that as tq D 1 � 1�t0
2q

, tq ! 1 as
q !1. Therefore, if I is sufficiently large,

1=2 � tq � 1:

Furthermore, as �Ei .P / C �Bi .P / D 1, it follows that

1 � �Bi .P / C tq�Ei .P / � tq � 1=2: (8.11)

Analogously,
1 � �Di .P / C tq�Ci .P / � tq � 1=2: (8.12)

Combining these estimates, we find the first bounds

k1�Bi .P / � �
1
i;q.P / � k2�Bi .P /;

k1�Ei .P /�Di .P / � �
2
i;q.P / � k2�Ei .P /�Di .P /:

Using the notation of Section 5, it is easy to see that

�Bi .P / �
2.p � 1/

1C ap�1
1

i
; �Ei .P /�Di .P / �

a

aC 1

1

i
;

whence (8.8)–(8.9) follow.
We now turn to the proof of (8.10). The bound from below is immediate. Moreover, by

(8.11)–(8.12),

0 < �3i;q.P / � �Ei .P /�Ci .P / D
yi�1 C gw.xi�1/

yi C gw.xi�1/

xi�1 C g
�1
w .yi /

xi C g�1w .yi /
:

We need to show that, for 
 D 1Cmin ¹1; 2.p � 1/º, some C > 0 and large i ,

yi�1 C gw.xi�1/

yi C gw.xi�1/

xi�1 C g
�1
w .yi /

xi C g�1w .yi /
� eC=i




e�2min ¹Gp.c/;Gp.2c/º=i :

This was already proved in Section 6.5, and we sketch the estimate for the convenience
of the reader. We only treat the estimate of �Ci .P /, the proof of the other term being
analogous. Write

xi�1 C g
�1
w .yi /

xi C g�1w .yi /
D eln.xi�1Cg�1w .yi //�ln.xiCg�1w .yi //:

Now use (6.25) to estimate

ln.xi�1 C g�1w .yi // � ln.xi C g�1w .yi // �
xi�1 � xi

xi C g�1w .yi /
:
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Estimate (6.26) gives

eln.xi�1Cg�1w .yi //�ln.xiCg�1w .yi // � eC=i



e�
2a
aC1

1
i :

A similar proof yields

yi�1 C gw.xi�1/

yi C gw.xi�1/
� eC=i




e
�
2.p�1/

1Cap�1
1
i :

Combining the last two inequalities, we find, for all P 2 Q.c/,

0 < �3i;q.P / � e
C=i
 e�2Gp.a/=i

(5.4);(5.5)
� eC=i




e�2min ¹Gp.c/;Gp.2c/º=i :

Proof of Proposition 8.3. The construction is inductive. If j2 D j1 C 1, then we set

�j1;j2;q.P / WD �j1;q.P /;

where �j1;q was introduced in Lemma 8.4. If j2 > j1 C 1, then �j1;j2;q.P / is obtained
in j2 � j1 � 2 steps. First, �1 WD �j1;q.P /. By definition, �1 contains a Dirac delta at
Cj1.P / D Aj1C1.P / with weight �3j1;q.P /. Now Aj1C1.P / is again the barycenter of
�j1C1;q.P / of Lemma 8.4. Hence we set

�2 WD �1 � �3j1;qıAj1C1.P /
C �3j1;q�j1C1;q.P /:

If j2 � j1 D 2, we stop. Otherwise, we continue iteratively, defining for k 2 ¹2; : : : ;
j2 � j1º,

�k WD�k�1�
�k�2Y
rD0

�3j1Cr;q.P /
�
ıAj1Ck�1.P /

C

�k�2Y
rD0

�3j1Cr;q.P /
�
�j1Ck�1;q.P /: (8.13)

Finally, the required laminate is �j1;j2;q.P / WD �
j2�j1 . By construction, �j1;j2;q.P / is

a laminate of finite order. The fact that the barycenter of �j1;j2;q.P / is Aj1.P / and
(8.3) also follow by construction. By Lemma 7.1, all the sets U 1

k;q
, U 2

k;q
and U 3j2 for

k 2 ¹j1; : : : ; j2 � 1º are pairwise disjoint. Therefore,

�j1;j2;q.P /.U
3
j2
/ D

�j2�j1�2Y
rD0

�3j1Cr;q.P /
�
�j2�1;q.P /.U

3
j2
/

(8.10)
> 0:

We combine Lemmas 8.1–8.2 and Proposition 8.3 to prove the last two propositions of
this section.

Proposition 8.5. Let q � j2 � 2 and j2 > j1. There exists a sufficiently large I 2 N such
that if j1 � I , then there exists a universal constant C > 0 such that the following holds.
For all P 2 Q.c/, ˆ1j1;tq .P / is the barycenter of a laminate of finite order �1j1;j2;q.P /
with

spt.�1j1;j2;q.P // �
j2�1[
iDj1

U 1i;qC1 [

j2�1[
iDj1

U 2i;qC1 [ U
3
j2
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and the following estimates hold:

�1j1;j2;q.P /.U
1
j1;qC1

/ � 1 �
C

2j2
; (8.14)

�1j1;j2;q.P /
� j2�1[
iDj1C1

U 1i;qC1 [

j2�1[
iDj1

U 2i;qC1 [ U
3
j2

�
�
C

2j2
; (8.15)

�1j1;j2;q.P /.U
3
j2
/ > 0: (8.16)

Proof. Combining Lemma 8.1 with Proposition 8.3, we define the laminate of finite order

�1j1;j2;q.P / D
tq

tqC1
ıˆ1
j1;tqC1

.P / C

�
1 �

tq

tqC1

�
�j1;j2;qC1.P /:

We check as in Lemma 8.1 that ˆ1j1;tq .P / is the barycenter of �1j1;j2;q.P /. It is immediate
to see that

spt.�1j1;j2;q.P // �
j2�1[
iDj1

U 1i;tqC1 [

j2�1[
iDj1

U 2i;tqC1 [ U
3
j2
:

Recall that the union is disjoint if I is sufficiently large by Lemma 7.1. We now come to
the required estimates. First,

�1j1;j2;q.P /.U
1
j1;qC1

/ D
tq

tqC1
C

�
1 �

tq

tqC1

�
�j1;j2;qC1.P /.U

1
j1;qC1

/ �
tq

tqC1
:

Since q � j2 � 2 and tq D 1 � 1�t0
2q

, we find a constant C > 0 such that

tq

tqC1
� 1 �

C

2j2
:

It also follows that

�1j1;j2;q.P /
� j2�1[
iDj1C1

U 1j1;qC1 [

j2�1[
iDj1

U 2j1;qC1 [ U
3
j2

�
�
C

2j2
:

Finally, (8.16) follows from (8.4). This finishes the proof.

Proposition 8.6. Let q � j2 � 2 and j2 > j1 C 1. There exists a sufficiently large I 2 N
such that if j1 � I , then there exists a universal constant C > 0 such that the follow-
ing holds. For all P 2 Q.c/, ˆ2j1;tq .P / is the barycenter of a laminate of finite order
�2j1;j2;q.P / with

spt.�2j1;j2;q.P // �
j2�1[
iDj1C1

U 1i;qC1 [

j2�1[
iDj1

U 2i;qC1 [ U
3
j2

and the following estimates hold:

�2j1;j2;q.P /.U
2
j1;qC1

/ � 1 �
C

2j2
; (8.17)
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�2j1;j2;q.P /
� j2�1[
iDj1C1

U 1i;qC1 [

j2�1[
iDj1C1

U 2i;qC1 [ U
3
j2

�
�
C

2j2
; (8.18)

�2j1;j2;q.P /.U
3
j2
/ > 0: (8.19)

Proof. The proof is analogous to the one of Proposition 8.5, and is based on a combination
of Lemma 8.2 and Proposition 8.3. We omit the details.

9. The inductive proposition and conclusion

This section is devoted to the proof of Theorem 1.2. As in every convex integration-type
argument, the construction of the exact solution is inductive. Let � � R2 be any convex,
bounded and open domain. Define countably many families of sets

Fn WD ¹�1;n; : : : ; �Nn;nº

with the following properties:

� for all n, ¹�j;nºj are pairwise disjoint, open sets, whose union is � up to a set of zero
measure;

� for every j 2 ¹1; : : : ; NnC1º, if �j;nC1 \�k.j /;n ¤ ; for some k.j / 2 ¹1; : : : ; Nnº,
then �j;nC1 � �k.j /;n;

� diam.�j;n/ � 1=n for all j 2 ¹1; : : : ; Nnº and n 2 N.

At the end we fixed of Section 6 the parameter c so that (5.4)–(5.5) and Proposition 6.2
hold. Consequently, we let I be an index for which Propositions 6.2, 8.5, 8.6 and Lemmas
7.1, 8.2, 8.4 hold, and t0 is fixed by Lemma 7.1. Furthermore, let as usual Q.c/ be the
open set of parameters of our constructions, whose points are denoted by P . Further, we
will always denote


 WD 1Cmin ¹1; 2.p � 1/º: (9.1)

The inductive construction will be formalized in Proposition 9.1, and we illustrate here
its first step. Start with any affine map w0 D Mx on �, where M 2 AI .Q.c//, say
M D AI .P / with P 2 Q.c/. We write AI .P / for the barycenter of the laminate of finite
order �I;I .P / of Lemma 8.4. In every subset �j;I 2 FI , use Proposition 4.3 to find a
piecewise affine Lipschitz map w1 with the following properties:

(1) w1 DMx on @�;

(2) kw1 � w0kL1.�;R2/ � 1=2;

(3) Dw1 2 V1 a.e.;

(4) the following estimates hold for all j 2 ¹1; : : : ; N1º:

(a) k1j�j;I j=I � j¹x 2 �j;I W Dw1.x/ 2 U 1I;I ºj � k2j�j;I j=I ;

(b) k1j�j;I j=I � j¹x 2 �j;I W Dw1.x/ 2 U 2I;I ºj � k2j�j;I j=I ;

(c) 0 < j¹x 2 �j;I W Dw1.x/ 2 U 3IC1ºj � e
C=I
 e�2min ¹Gp.c/;Gp.2c/º=I j�j;I j.
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Notice that (3)–(4) are consequences of the openness of V1, U 1I;I ; U
2
I;I and U 3IC1. We can

now move on to the inductive proposition. Recall that

Vn D

ICn�1[
iDI

U 1i;ICn�1 [

ICn�1[
iDI

U 2i;ICn�1 [ U
3
ICn:

In the proof, we will consider the usual positive and radial mollifier � 2 C1c .B1/, and its
associated mollification kernel �ı .

Proposition 9.1. Let n � 1. Suppose we are given piecewise affine, Lipschitz maps wq W
�! R2 for q 2 ¹1; : : : ; nº, and positive decreasing numbers ı1; : : : ; ın with ın � 2�n

enjoying the following properties:

(1) wq DMx on @�;

(2) kwq ? �ıq � wqkW 1;1.R2;R2/ � 2
�q for all q 2 ¹1; : : : ; nº;

(3) kwqC1 � wqkL1.R2;R2/ � ıq2�q for all q 2 ¹1; : : : ; n � 1º;

(4) Dwq 2 Vq for all q 2 ¹1; : : : ; nº.

Then there exist a piecewise affine, Lipschitz map wnC1 and a number 0 < ınC1 <

min ¹ın; 2�n�1º with the following properties:

(i) wnC1 DMx on @�;

(ii) kwnC1 ? �ınC1 � wnC1kW 1;1.R2;R2/ � 2
�n�1;

(iii) kwnC1 � wnkL1.R2;R2/ � ın2�n�1;

(iv) DwnC1 2 VnC1;

(v) for k D 1; 2, i 2 ¹0; : : : ; n � 1º and j 2 ¹1; : : : ; NnC1º,�
1 �

C

2n

�
j¹x 2 �j;nC1 W Dwn 2 U

k
ICi;ICn�1ºj

� j¹x 2 �j;nC1 W DwnC1 2 U
k
ICi;ICnºj

� j¹x 2 �j;nC1 W Dwn 2 U
k
ICi;ICn�1ºj C

Cn

2n
j�j;nC1j; (9.2)

k1

n
j¹x 2 �j;nC1 W Dwn 2 U

3
ICnºj � j¹x 2 �j;nC1 W DwnC1 2 U

k
ICn;ICnºj

�
k2

n
j¹x 2 �j;nC1 W Dwn 2 U

3
ICnºj C

Cn

2n
j�j;nC1j; (9.3)

0 < j¹x 2 �j;nC1 W DwnC1 2 U
3
ICnC1ºj

� eC=n



e
�2min ¹Gp.c/;Gp.2c/º

ICn j¹x 2 �j;nC1 W Dwn 2 U
3
ICnºj C

Cn

2n
j�j;nC1j: (9.4)

Notice that in the previous statement, in order to write quantities like

kwnC1 ? �ınC1 � wnC1kW 1;1.R2;R2/;

we assume to have extended all maps wq as wq D Mx outside �. By (1) and (i), this
extension preserves the Lipschitzianity of those maps, hence we are allowed to do so.
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Proof of Proposition 9.1. Let �0 � �j;nC1 � �k.j /;n be an open set where wn is affine,
i.e. wn.x/ D Sx C b for some S 2 Vn and b 2 R2. By Lemma 7.1, Vn is a disjoint union,
hence there are only three cases: either

S 2

ICn�1[
iDI

U 1i;ICn�1; (9.5)

S 2

ICn�1[
iDI

U 2i;ICn�1; or (9.6)

S 2 U 3ICn: (9.7)

Assume (9.5) holds, so S 2 U 1ICi;ICn�1 for some i 2 ¹0; : : : ; n � 1º. By definition, there
exists P 2 Q.c/ such that

S D ˆ1ICi;tICn�1.P /:

We can then use the laminate �1ICi;ICnC1;ICn�1.P / of Proposition 8.5 combined with
Proposition 4.3 to find a Lipschitz and piecewise affine map f with the following proper-
ties:

� f j@�0 D wnj@�0 ;

� almost everywhere on �0,

Df 2

ICn[
jDICi

U 1j;ICn [

ICn[
jDICi

U 2j;ICn [ U
3
ICnC1

with�
1 �

C

2n

�
j�0j � j¹x 2 �0 W Df 2 U 1ICi;ICnºj � j�

0
j; (9.8)

ˇ̌̌°
x 2 �0 W Df 2

ICn[
jDICiC1

U 1j;ICn [

ICn[
jDICi

U 2j;ICn [ U
3
ICnC1

±ˇ̌̌
�
C

2n
j�0j; (9.9)

0 < j¹x 2 �0 W Df 2 U 3ICnC1ºjI (9.10)

� kf � wnkL1.�0/ � ın2
�n�1.

On such a set�0, we replace wnj�0 by f . Analogously, if (9.6) holds, i.e. S 2 U 2ICi;ICn�1
for some i 2 ¹0; : : : ; n� 1º, then, by definition, S D ˆ2ICi;tICn�1.P / for some P 2Q.c/,
and we can then use the laminate �2ICi;ICnC1;ICn�1.P / of Proposition 8.6 combined
with Proposition 4.3 to find a Lipschitz and piecewise affine map g with the following
properties:

� gj@�0 D wnj@�0 ;

� almost everywhere on �0,

Dg 2

ICn[
jDICiC1

U 1j;ICn [

ICn[
jDICi

U 2j;ICn [ U
3
ICnC1
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with�
1 �

C

2n

�
j�0j � j¹x 2 �0 W Dg 2 U 2ICi;ICnºj � j�

0
j; (9.11)

ˇ̌̌°
x 2 �0 W Dg 2

ICn[
jDICiC1

U 1j;ICn [

ICn[
jDICiC1

U 2j;ICn [ U
3
ICnC1

±ˇ̌̌
�
C

2n
j�0j; (9.12)

0 < j¹x 2 �0 W Dg 2 U 3ICnC1ºjI (9.13)

� kg � wnkL1.�0/ � ın2
�n�1.

On such a set �0, we replace wnj�0 by g. Finally, in the third case, (9.7), we have
S D AICn.P / for some P 2 Q.c/. We use Lemma 8.4 combined with Proposition 4.3 to
find a Lipschitz and piecewise affine map h with the following properties:

� hj@�0 D wnj@�0 ;

� almost everywhere on �0,

Dh 2 U 1ICn;ICn [ U
2
ICn;ICn [ U

3
ICnC1

with
k1

n
j�0j � j¹x 2 �0 W Dh 2 U 1ICn;ICnºj �

k2

n
j�0j; (9.14)

k1

n
j�0j � j¹x 2 �0 W Dh 2 U 2ICn;ICnºj �

k2

n
j�0j; (9.15)

0 < j¹x 2 �0 W Dh 2 U 3ICnC1ºj � e
C=n
 e

�2min ¹Gp.c/;Gp.2c/º
ICn j�0jI (9.16)

� kh � wnkL1.�0/ � ın2
�n�1.

Finally, for a set �0 of this type, we replace wnj�0 by h. These replacements precisely give
wnC1. Notice that in all of the above estimates the quantities 2n, n and eC=n



should have

been 2nCIC1, nC I C 1 and eC=.ICn/



, but, since they are all comparable, we can simply
reabsorb the errors in making these substitutions inside the constants C , k1; k2.

By construction, (i), (iii) and (iv) hold. The existence of ınC1 as in (ii) is guaranteed
by the Lipschitzianity of wnC1. We can now show the estimates asserted in (v). Let first
i 2 ¹0; : : : ; n � 1º and j 2 ¹1; : : : ; NnC1º. Then�
1�

C

2n

�
j¹x 2�j;nC1 WDwn 2 U

1
ICi;ICn�1ºj

(9.8)
� j¹x 2�j;nC1 WDwnC1 2 U

1
ICi;ICnºj

(9.8);(9.9);(9.12)
� j¹x 2 �j;nC1 W Dwn 2 U

1
ICi;ICn�1ºj

C

i�1X
`D0

C

2n
j¹x 2 �j;nC1 W Dwn 2 U

1
IC`;ICn�1ºj

C

i�1X
`D0

C

2n
j¹x 2 �j;nC1 W Dwn 2 U

2
IC`;ICn�1ºj

� j¹x 2 �j;nC1 W Dwn 2 U
1
ICi;ICn�1ºj C

Cn

2n
j�j;nC1j:
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With analogous computations, for the same ranges of i and j , we find�
1�

C

2n

�
j¹x 2�j;nC1 WDwn 2 U

2
ICi;ICn�1ºj

(9.11)
� j¹x 2�j;nC1 WDwnC1 2 U

2
ICi;ICnºj

(9.11);(9.9);(9.12)
� j¹x 2 �j;nC1 W Dwn 2 U

2
ICi;ICn�1ºj C

Cn

2n
j�j;nC1j:

We still need to write the estimates for i D n:

k1

n
j¹x 2 �j;nC1 W Dwn 2 U

3
ICnºj

(9.14)
� j¹x 2 �j;nC1 W DwnC1 2 U

1
ICn;ICnºj

(9.14);(9.9);(9.12)
�

k2

n
j¹x 2 �j;nC1 W Dwn 2 U

3
ICnºj C

Cn

2n
j�j;nC1j;

and

k1

n
j¹x 2 �j;nC1 W Dwn 2 U

3
ICnºj

(9.14)
� j¹x 2 �j;nC1 W DwnC1 2 U

2
ICn;ICnºj

(9.15);(9.9);(9.12)
�

k2

n
j¹x 2 �j;nC1 W Dwn 2 U

3
ICnºj C

Cn

2n
j�j;nC1j:

Finally,

0
(9.10);(9.13);(9.16)

< j¹x 2 �j;nC1 W DwnC1 2 U
3
ICnC1ºj

(9.16);(9.9);(9.12)
� eC=n




e
�2min ¹Gp.c/;Gp.2c/º

ICn j¹x 2 �j;nC1 W Dwn 2 U
3
ICnºjC

Cn

2n
j�j;nC1j:

This concludes the proof of the inductive proposition.

We now show that the sequence ¹wnº is equibounded in W 1;1C".�;R2/ for some
" D ".p/ > 0.

Proposition 9.2. The sequence ¹wnº is equibounded in W 1;1C".�;R2/.

We first show the following.

Lemma 9.3. There exists a constant C D C.p/ > 0 such that the following estimates hold
for all n � 1 and 0 � i � n � 1:

j¹x 2 � W Dwn 2 U
3
ICnºj � Cn

�2min ¹Gp.c/;Gp.2c/º; (9.17)

j¹x 2 � W Dwn 2 U
1
ICi;ICn�1ºj � Ci

�2min ¹Gp.c/;Gp.2c/º�1; (9.18)

j¹x 2 � W Dwn 2 U
2
ICi;ICn�1ºj � Ci

�2min ¹Gp.c/;Gp.2c/º�1: (9.19)

Proof. Sum inequality (9.4) over j 2 ¹1; : : : ; NnC1º to find

j¹x 2 � W DwnC1 2 U
3
ICnC1ºj � e

C=n
 e
�2min ¹Gp.c/;Gp.2c/º

ICn j¹x 2 � W Dwn 2 U
3
ICnºj

C
Cn

2n
:
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Now we can apply this relation recursively to discover that, for all n 2 N,

j¹x 2 � W Dwn 2 U
3
ICnºj

� C

�n�1Y
`D1

eC=`



e
�2min ¹Gp.c/;Gp.2c/º

IC` C

n�1X
`D1

� n�1Y
jD`C1

eC=j



e
�2min ¹Gp.c/;Gp.2c/º

ICj

� `
2`

�
:

In the previous expression, we have used the convention introduced in (6.3). Using (6.16),
we can estimate

n�1Y
`D1

e
�2min ¹Gp.c/;Gp.2c/º

IC` D e�2min ¹Gp.c/;Gp.2c/º
Pn�1
`D1

1
IC` � Cn�2min ¹Gp.c/;Gp.2c/º:

On the other hand, 
 > 1 by (9.1). Therefore,
Qn
`D1 e

C=`
 is uniformly bounded in n.
Concerning the second summand, we start by estimating, for all `C 1 � n � 1,

n�1Y
jD`C1

eC=j



e
�2min ¹Gp.c/;Gp.2c/º

ICj � e
P1
`D1 C=j




e
Pn�1
jD`C1

�2min ¹Gp.c/;Gp.2c/º
ICj

(6.16)
� Ce�2min ¹Gp.c/;Gp.2c/º ln. ICn�1

IC`C1
/
� C

�
I C `C 1

I C n � 1

�2min ¹Gp.c/;Gp.2c/º

:

Thus,

n�1X
`D1

n�1Y
jD`C1

eC=j



e
�2min ¹Gp.c/;Gp.2c/º

ICj
`

2`

� C

�
1

I C n � 1

�2min ¹Gp.c/;Gp.2c/º n�1X
`D1

.I C `C 1/2min ¹Gp.c/;Gp.2c/º `

2`

� Cn�2min ¹Gp.c/;Gp.2c/º;

which concludes the proof of (9.17).
Using (9.17) and (9.3), for k D 1; 2 and all n 2 N we have

j¹x 2 � W Dwn 2 U
k
ICn�1;ICn�1ºj � Cn

�2min ¹Gp.c/;Gp.2c/º�1 C
Cn

2n
: (9.20)

Through (9.2) and a simple inductive reasoning, we also find, for all n � 1 and 0 � i �
n � 1,

j¹x 2 � W DwnC1 2 U
k
ICi;ICnºj � j¹x 2 � W Dwn 2 U

k
ICi;ICn�1ºj C

Cn

2n

(9.20)
� C.i C 1/�2min ¹Gp.c/;Gp.2c/º�1 C C

1X
`DiC1

`

2`
� C.i C 1/�2min ¹Gp.c/;Gp.2c/º�1:

This concludes the proof.
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Proof of Proposition 9.2. Let �n WD ¹x 2 � W Dwn 2 U 3ICnº, �
1
i;n WD ¹x 2 � W Dwn 2

U 1ICi;ICn�1º, �
2
i;n WD ¹x 2 � W Dwn 2 U

2
ICi;ICn�1º, for i 2 ¹0; : : : ; n � 1º. Notice that,

by definition,

sup ¹jM j WM 2 U 1ICi;ICn�1º D sup
P2Q.c/

jˆ1ICi;tICn�1.P /j;

sup ¹jM j WM 2 U 2ICi;ICn�1º D sup
P2Q.c/

jˆ2ICi;tICn�1.P /j;

sup ¹jM j WM 2 U 3ICnº D sup
P2Q.c/

jAICn.P /j:

Thus we can estimate, for any q 2 Œ1;1/,

kDwnk
q

Lq.�;R2/
�

nX
iD1

sup
P2Q.c/

jˆ1ICi;tICn�1.P /j
q
j�1i;nj

C

nX
iD1

sup
P2Q.c/

jˆ2ICi;tICn�1.P /j
q
j�2i;nj C sup

P2Q.c/

jAICn.P /j
q
j�nj:

(9.21)
Recall that by Proposition 6.2 (b),

sup
P2Q.c/

jzi .P /j � Ci
2.p�2/; 8i � 1:

Through (5.8), we see that also

sup
P2Q.c/

jvi .P /j � Ci
2.p�2/; 8i � 1:

Using the definitions of ˆ1i;t and ˆ2i;t and the previous estimates, we can bound

sup
P2Q.c/

jˆ1ICi;tICnC1.P /j � Ci
max ¹2;2.p�1/º;

sup
P2Q.c/

jˆ2ICi;tICnC1.P /j � Ci
max ¹2;2.p�1/º;

sup
P2Q.c/

jAICnC1.P /j � Cn
max ¹2;2.p�1/º:

Combining these with the estimates of Lemma 9.3, we can continue (9.21) as

kDwnk
q

Lq.�;R2/

�C

nX
iD1

iqmax ¹2;2.p�1/ºi�2min ¹Gp.c/;Gp.2c/º�1CCnqmax ¹2;2.p�1/ºn�2min ¹Gp.c/;Gp.2c/º:

Our choices (5.4) and (5.5) imply (5.3), which yields precisely

max ¹1; p � 1º �min ¹Gp.c/; Gp.2c/º < 0:
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Therefore, for some q > 1, we also have

qmax ¹1; p � 1º �min ¹Gp.c/; Gp.2c/º < 0;

which proves the present proposition.

We are finally in a position to prove Theorem 1.2, which we restate here.

Theorem 9.4. Let��R2 be a ball. For every p 2 .1;1/;p¤ 2, there exists "D ".p/ > 0
and a continuous u 2 W 1;p�1C".�/ such that u is affine on @�,

3

4
� @yu �

5

4
a.e. on �; (9.22)

div.jDujp�2Du/ D 0 (9.23)

in the sense of distributions, but for all open B � �,ˆ
B

jDujp dx D1: (9.24)

Proof. Let ¹wnº be the sequence constructed in Proposition 9.1. By (iii), the limit w1 D
limn!1wn exists in the L1.R2;R2/ topology. Since every wn is continuous, so is w1.
By Proposition 9.2, w1 is also the weak limit of wn in W 1;1C".�;R2/. We shall now
prove that the convergence is strong. This is a crucial but standard point of this type of
constructions (see [34, Theorem 5.3]). Indeed, using the notation of Proposition 9.1, for
all n we have

kDwn �Dw1kL1 � kDwn �Dwn ? �ınkL1 C kDw1 �Dw1 ? �ınkL1

C kDw1 ? �ın �Dwn ? �ınkL1 :

By our choice of ın (see Proposition 4.3 (ii)) and the fact that Dw1 2 W 1;1C", the first
two summands on the right-hand side converge to 0. Concerning the third, we can employ
standard estimates on mollification to bound

kDw1 ? �ın �Dwn ? �ınkL1 �
C

ın
kw1 � wnkL1 �

C

ın

1X
jDn

kwjC1 � wj kL1

(iii)
�
C

ın

1X
jDn

ıj 2
�j�1

� C

1X
jDn

2�j�1:

We infer the strong convergence of Dwn to Dw1. Hence a subsequence of ¹Dwnº
converges pointwise a.e. Through Proposition 9.1 (iv) and Lemma 7.2, we deduce that for
almost all x 2 �,

Dw1.x/ 2 Kp:

Proposition 2.1 tells us that if w1 D .w11; w
2
1/, then u WD w11 has the right integrability

and fulfills (9.23). We now turn to (9.22), which is straightforward: by definition of Vn it
follows that if

X D

�
x11 x12
x21 x22

�
2 Vn
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for some n, then 3
4
< x12 <

5
4

. Since by Proposition 4.3 (iv) we have, a.e. on �,

Dwn 2 Vn; 8n;

it follows that if wn D .w1n; w
2
n/ then a.e. on �,

3

4
� @yw

1
n �

5

4
:

Therefore, w1 enjoys the same property.
We shall now show (9.24). In order to do so, we show that Dw1 is (essentially)

discontinuous on any open subset B � �. We claim this is enough to deduce (9.24).
Indeed, suppose for contradiction that Du 2 Lp.�0/ for some open �0 � �. Then since
u solves (9.23), we see that it is a weak solution of the p-Laplace equation, and by the
classical regularity theory for that equation,Du is continuous in�0, and hence so isDw1,
which would result in a contradiction.

Thus, we conclude the proof of the present theorem by showing the above discontinuity.
Fix B � � open. Since

sup
j

¹diam.�j;n/ W �j;n 2 Fnº � 1=n;

we find n0 and j0 2 ¹1; : : : ; Nn0º such that �j0;n0 � B . Recall that, by Lemma 7.2 and
the pointwise convergence of a subsequence of ¹Dwnºn,

Dw1 2
[
i�I

Bi .Q.c// [
[
i�I

Di .Q.c//:

Our aim is to show thatˇ̌̌°
x 2 �j0;n0 W Dw1.x/ 2

[
i�I

Bi .Q.c//
±ˇ̌̌
> 0; (9.25)ˇ̌̌°

x 2 �j0;n0 W Dw1.x/ 2
[
i�I

Di .Q.c//
±ˇ̌̌
> 0: (9.26)

Since, by Lemma 7.1,
S
i�I Bi .Q.c// \

S
i�I Di .Q.c// D ;, this would prove that

Dw1 is not continuous in B . We claim that, in order to prove (9.25)–(9.26), it is sufficient
to show that there exists a constant c0 D c0.j0; n0/ > 0 such that for all k D 1; 2 and
n � n0, ˇ̌̌°

x 2 �j0;n0 W Dwn.x/ 2

ICn�1[
iDI

U ki;ICn�1

±ˇ̌̌
� c0: (9.27)

Indeed, let �kn WD ¹x 2 �j0;n0 W Dwn.x/ 2
SICn�1
iDI U ki;ICn�1º. If (9.27) holds, then

ˆ
�j0;n0

d
�
Dwn.x/;

n�1[
iDI

Bi .Q.c//
�
dx �

ˆ
�2n

d
�
Dwn.x/;

n�1[
iDI

Bi .Q.c//
�
dx � c0c0;



M. Colombo, R. Tione 44

where in the last inequality we have used the fact that

d
�
M;

n�1[
iDI

Bi .Q.c//
�
� c0 > 0; 8M 2

ICn�1[
iDI

U 2i;ICn�1;

as can be easily seen by properties (7.1)–(7.2). By the strong convergence Dwn ! Dw1
in L1.�/, it follows that

ˆ
�j0;n0

d
�
Dw1.x/;

1[
iDI

Bi .Q.c//
�
dx � c0c0 > 0;

and we deduce (9.26). Analogously, one infers (9.25) from (9.27) for k D 1.
Hence, we only need to prove (9.27). Pick any n > n0. Recall that we chose the

partitions ¹�j;nº with the property that for every j 2 ¹1; : : : ; NnC1º, if �j;nC1 \�k.j /;n
¤ ; for some k.j / 2 ¹1; : : : ; Nnº, then �j;nC1 � �k.j /;n. Therefore, we can sum over a
suitable subset of indices j 2 ¹1; : : : ; Nnº to rewrite, for all n � n0 C 2, i D n0 C 1 and
k D 1; 2, the bounds from below of (9.2)–(9.4) as�
1 �

C

2n

�
j¹x 2 �j0;n0 W Dwn 2 U

k
ICn0C1;ICn�1

ºj

� j¹x 2 �j0;n0 W DwnC1 2 U
k
ICn0C1;ICn

ºj; (9.28)

k1

n
j¹x 2 �j0;n0 W Dwn 2 U

3
ICnºj � j¹x 2 �j0;n0 W DwnC1 2 U

k
ICn;ICnºj; (9.29)

0 < j¹x 2 �j0;n0 W Dwn�1 2 U
3
ICn�1ºj: (9.30)

We use (9.28) inductively to find that if n � n0 C 3, then

n�1Y
iDn0C2

�
1 �

C

2i

�
j¹x 2 �j0;n0 W Dwn0C2 2 U

k
ICn0C1;ICn0C1

ºj

� j¹x 2 �j0;n0 W Dwn 2 U
k
ICn0C1;ICn�1

ºj: (9.31)

We also have

0
(9.30)
<

k1

n0 C 1
j¹x 2 �j0;n0 W Dwn0C1 2 U

3
ICn0C1

ºj

(9.29)
� j¹x 2 �j0;n0 W Dwn0C2 2 U

k
ICn0C1;ICn0C1

ºj: (9.32)

Since
1Y

iDn0C2

�
1 �

C

2i

�
> 0;

from (9.31)–(9.32) we infer (9.27), and we conclude the proof of the theorem.
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