Special macroscopic modes and hypocoercivity
Kleber Carrapatoso
Institut Polytechnique de Paris, Palaiseau, FranceJean Dolbeault
CNRS & Université Paris-Dauphine – PSL, Paris, FranceFrédéric Hérau
Université de Nantes, Nantes, FranceStéphane Mischler
Université Paris-Dauphine – PSL, Paris, FranceClément Mouhot
University of Cambridge, Cambridge, UKChristian Schmeiser
Universität Wien, Wien, Austria
Abstract
We study linear inhomogeneous kinetic equations with an external confining potential and a collision operator admitting several local conservation laws (local density, momentum and energy). We classify all special macroscopic modes (stationary solutions and time-periodic solutions). We also prove the convergence of all solutions of the evolution equation to such non-trivial modes, with a quantitative exponential rate. This is the first hypocoercivity result with multiple special macroscopic modes with constructive estimates depending on the geometry of the potential.
Cite this article
Kleber Carrapatoso, Jean Dolbeault, Frédéric Hérau, Stéphane Mischler, Clément Mouhot, Christian Schmeiser, Special macroscopic modes and hypocoercivity. J. Eur. Math. Soc. (2024), published online first
DOI 10.4171/JEMS/1502