Special macroscopic modes and hypocoercivity
- Kleber CarrapatosoInstitut Polytechnique de Paris, Palaiseau, France
- Jean DolbeaultCNRS & Université Paris-Dauphine – PSL, Paris, France
- Frédéric HérauUniversité de Nantes, Nantes, France
- Stéphane MischlerUniversité Paris-Dauphine – PSL, Paris, France
- Clément MouhotUniversity of Cambridge, Cambridge, UK
- Christian SchmeiserUniversität Wien, Wien, Austria

Abstract
We study linear inhomogeneous kinetic equations with an external confining potential and a collision operator admitting several local conservation laws (local density, momentum and energy). We classify all special macroscopic modes (stationary solutions and time-periodic solutions). We also prove the convergence of all solutions of the evolution equation to such non-trivial modes, with a quantitative exponential rate. This is the first hypocoercivity result with multiple special macroscopic modes with constructive estimates depending on the geometry of the potential.
Cite this article
Kleber Carrapatoso, Jean Dolbeault, Frédéric Hérau, Stéphane Mischler, Clément Mouhot, Christian Schmeiser, Special macroscopic modes and hypocoercivity. J. Eur. Math. Soc. (2024), published online first
DOI 10.4171/JEMS/1502