Nonexistence of Courant-type nodal domain bounds for eigenfunctions of the Dirichlet-to-Neumann operator

  • Alberto Enciso

    Consejo Superior de Investigaciones Científicas, Madrid, Spain
  • Angela Pistoia

    Università degli Studi di Roma “La Sapienza”, Italy
  • Luigi Provenzano

    Università degli Studi di Roma “La Sapienza”, Italy
Nonexistence of Courant-type nodal domain bounds for eigenfunctions of the Dirichlet-to-Neumann operator cover

A subscription is required to access this article.

Abstract

Given a compact manifold  with boundary of dimension and any integers  and , we show that there exists a metric on  for which the first  nonconstant eigenfunctions of the Dirichlet-to-Neumann map on  have at least  nodal components. This provides a negative answer to the question of whether the number of nodal domains of Dirichlet-to-Neumann eigenfunctions satisfies a Courant-type bound, which has been featured in recent surveys by Girouard and Polterovich (2017) and by Colbois, Girouard, Gordon and Sher (2024).

Cite this article

Alberto Enciso, Angela Pistoia, Luigi Provenzano, Nonexistence of Courant-type nodal domain bounds for eigenfunctions of the Dirichlet-to-Neumann operator. J. Eur. Math. Soc. (2025), published online first

DOI 10.4171/JEMS/1722