Asymptotic stability of the fourth-order kink for general perturbations in the energy space

  • Christopher Maulén

    Universität Bielefeld, Bielefeld, Germany
  • Claudio Muñoz

    Universidad de Chile, Santiago, Chile
Asymptotic stability of the fourth-order $\phi^{4}$ kink for general perturbations in the energy space cover
Download PDF

This article is published open access under our Subscribe to Open model.

Abstract

The fourth-order model extends the classical model of quantum field theory to the fourth-order case, but sharing the same kink solution. It is also the dispersive counterpart of the well-known parabolic Cahn–Hilliard equation. Mathematically speaking, the kink is characterized by a fourth-order nonnegative linear operator with a simple kernel at the origin but no spectral gap. In this paper, we consider the kink of this theory, and prove orbital and asymptotic stability for any perturbation in the energy space.

Cite this article

Christopher Maulén, Claudio Muñoz, Asymptotic stability of the fourth-order kink for general perturbations in the energy space. Ann. Inst. H. Poincaré Anal. Non Linéaire 42 (2025), no. 3, pp. 647–714

DOI 10.4171/AIHPC/112