Lack of local controllability for a water-tank system when the time is not large enough
Jean-Michel Coron
Sorbonne Université and Université Paris-Diderot SPC and CNRS and INRIA, Paris, FranceArmand Koenig
Université de Bordeaux and CNRS, Talence, FranceHoai-Minh Nguyen
Sorbonne Université and Université Paris-Diderot SPC and CNRS and INRIA, Paris, France
Abstract
We consider the small-time local-controllability property of a water tank modeled by one-dimensional Saint-Venant equations, where the control is the acceleration of the tank. It is known from the work of Dubois et al. that the linearized system is not controllable. Moreover, concerning the linearized system, they showed that a traveling time is necessary to bring the tank from one position to another for which the water is still at the beginning and at the end. Concerning the nonlinear system, Coron showed that local controllability around equilibrium states holds for a time large enough. In this paper, we show that for local controllability of the nonlinear system around the equilibrium states, the necessary time is at least even for the tank being still at the beginning and at the end. The key point of the proof is a coercivity property for the quadratic approximation of the water-tank system.
Cite this article
Jean-Michel Coron, Armand Koenig, Hoai-Minh Nguyen, Lack of local controllability for a water-tank system when the time is not large enough. Ann. Inst. H. Poincaré Anal. Non Linéaire 41 (2024), no. 6, pp. 1327–1365
DOI 10.4171/AIHPC/123