Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains
Vladimir Kondratiev
Department of Mathematics and Mechanics, Moscow State University, Moscow 119 899, RussiaVitali Liskevich
School of Mathematics, University of Bristol, Bristol BS8 1TW, United KingdomVitaly Moroz
School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
Abstract
We study the problem of the existence and nonexistence of positive solutions to the superlinear second-order divergence type elliptic equation with measurable coefficients , in an unbounded cone-like domain . We prove that the critical exponent for a nontrivial cone-like domain is always in and depends both on the geometry of the domain G and the coefficients a of the equation.
Résumé
Nous étudions le problème d'existence ou non existence de solutions positives d'équations elliptiques de type divergence du second-ordre superlinéaires à coefficients mesurables , , sur un domaine conique . Nous prouvons que l'exposant critique pour un domaine conique non–trivial est toujours dans , dépend à la fois de la géometrie du domaine G et des coefficients a de l'équation.
Cite this article
Vladimir Kondratiev, Vitali Liskevich, Vitaly Moroz, Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 1, pp. 25–43
DOI 10.1016/J.ANIHPC.2004.03.003