On asymptotic stability of solitary waves for nonlinear Schrödinger equations
Vladimir S. Buslaev
Institute for Physics, St. Petersburg State University, St. Petersburg-Petrodvorets, 198904, RussiaCatherine Sulem
Department of Mathematics, University of Toronto, Toronto, M5S 3G3 Canada
Abstract
We study the long-time behavior of solutions of the nonlinear Schrödinger equation in one space dimension for initial conditions in a small neighborhood of a stable solitary wave. Under some hypothesis on the structure of the spectrum of the linearized operator, we prove that, asymptotically in time, the solution decomposes into a solitary wave with slightly modified parameters and a dispersive part described by the free Schrödinger equation. We explicitly calculate the time behavior of the correction.
Résumé
On étudie le comportement aux temps longs des solutions de l’équation de Schrödinger nonlinéaire unidimensionnelle pour des conditions initiales proches d’une onde solitaire stable. Moyennant des hypothèses sur la structure du spectre de l’opérateur linearisé autour du soliton, on montre qu’asymptotiquement en temps, la solution se décompose en la somme d’une onde solitaire avec des paramètres faiblement modifiés et d’une composante dispersive, solution de l’équation de Schrödinger libre. On calcule explicitement le comportement en temps des termes correctifs.
Cite this article
Vladimir S. Buslaev, Catherine Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 3, pp. 419–475
DOI 10.1016/S0294-1449(02)00018-5