Propagation of low regularity for solutions of nonlinear PDEs on a Riemannian manifold with a sub-Laplacian structure
Frédéric Bernicot
CNRS, Université de Nantes, Laboratoire Jean Leray, 2, rue de la Houssinière, 44322 Nantes cedex 3, FranceYannick Sire
LATP-UMR7353-Université Aix-Marseille, 13397 Marseille, France
Abstract
Following Bernicot (2012) [7], we introduce a notion of paraproducts associated to a semigroup. We do not use Fourier transform arguments and the background manifold is doubling, endowed with a sub-Laplacian structure. Our main result is a paralinearization theorem in a non-Euclidean framework, with an application to the propagation of regularity for some nonlinear PDEs.
Cite this article
Frédéric Bernicot, Yannick Sire, Propagation of low regularity for solutions of nonlinear PDEs on a Riemannian manifold with a sub-Laplacian structure. Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), no. 5, pp. 935–958
DOI 10.1016/J.ANIHPC.2012.12.005