Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space

  • F. Chiacchio

    Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy
  • G. Di Blasio

    Dipartimento di Matematica, Seconda Università degli Studi di Napoli, via Vivaldi, Caserta, Italy

Abstract

We provide isoperimetric Szegö–Weinberger type inequalities for the first nontrivial Neumann eigenvalue in Gauss space, where Ω is a possibly unbounded domain of . Our main result consists in showing that among all sets Ω of symmetric about the origin, having prescribed Gaussian measure, is maximum if and only if Ω is the Euclidean ball centered at the origin.

Cite this article

F. Chiacchio, G. Di Blasio, Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space. Ann. Inst. H. Poincaré Anal. Non Linéaire 29 (2012), no. 2, pp. 199–216

DOI 10.1016/J.ANIHPC.2011.10.002