Discrete Dynamic Programming and Viscosity Solutions of the Bellman Equation
I. Capuzzo Dolcetta
Diparanoento di Matematica, Università di Roma “La Sapienza”, P. Aldo Moro, 2, 00185 Roma, ItalyM. Falcone
Diparanoento di Matematica, Università di Roma “La Sapienza”, P. Aldo Moro, 2, 00185 Roma, Italy
Abstract
This paper presents a technique for approximating the viscosity solution of the Bellman equation in deterministic control problems. This technique, based on discrete dynamic programming, leads to monotonically converging schemes and allows to prove a priori error estimates. Several computational algorithms leading to monotone convergence are reviewed and compared.
Cite this article
I. Capuzzo Dolcetta, M. Falcone, Discrete Dynamic Programming and Viscosity Solutions of the Bellman Equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), pp. 161–183
DOI 10.1016/S0294-1449(17)30020-3