On the analysis of a coupled kinetic-fluid model with local alignment forces
José A. Carrillo
Department of Mathematics, Imperial College London, London SW7 2AZ, United KingdomYoung-Pil Choi
Department of Mathematics, Imperial College London, London SW7 2AZ, United KingdomTrygve K. Karper
Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
Abstract
This paper studies global existence, hydrodynamic limit, and large-time behavior of weak solutions to a kinetic flocking model coupled to the incompressible Navier–Stokes equations. The model describes the motion of particles immersed in a Navier–Stokes fluid interacting through local alignment. We first prove the existence of weak solutions using energy and estimates together with the velocity averaging lemma. We also rigorously establish a hydrodynamic limit corresponding to strong noise and local alignment. In this limit, the dynamics can be totally described by a coupled compressible Euler – incompressible Navier–Stokes system. The proof is via relative entropy techniques. Finally, we show a conditional result on the large-time behavior of classical solutions. Specifically, if the mass-density satisfies a uniform in time integrability estimate, then particles align with the fluid velocity exponentially fast without any further assumption on the viscosity of the fluid.
Cite this article
José A. Carrillo, Young-Pil Choi, Trygve K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces. Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 2, pp. 273–307
DOI 10.1016/J.ANIHPC.2014.10.002