A Riemann–Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves

  • E. Shargorodsky

    School of Mathematical Sciences, University of Sussex, Falmer, Brighton, BN1 9QH, UK
  • J.F. Toland

    Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK

Abstract

This paper concerns the question of equivalence between the Euler–Lagrange equation of a certain functional and periodic Stokes waves on the surface of an infinitely deep irrotational incompressible flow of an ideal fluid under gravity. Of particular concern is Bernoulli’s constant-pressure condition on a free surface.

Résumé

Cet article concerne la question de l’équivalence entre les solutions de l’équation d’Euler–Lagrange pour une certaine fonctionnelle et les ondes périodiques de Stokes à la surface d’un liquide de profondeur infinie. Une attention particulière est portée sur la condition de Bernoulli qui dit que le pression est atmosphérique le long de la frontière libre.

Cite this article

E. Shargorodsky, J.F. Toland, A Riemann–Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 1, pp. 37–52

DOI 10.1016/S0294-1449(02)00006-9