Solutions with minimal period for Hamiltonian systems in a potential well
Antonio Ambrosetti
Scuola Normale Superiore, 56100 Pisa, ItalyVittorio Coti Zelati
Scuola Internazionale Superiore di Studi Avanzati, Strada Costiera 11, 34014 Trieste, Italy
Abstract
Let , where is a bounded set in . Suppose that tends to as tends to . Our main results concern the existence of periodic solutions of having a prescribed number as minimal period. The results are also generalized to first order Hamiltonian systems.
Résumé
Soit , où est un ouvert donné de . On suppose que quand . On montre l’existence de solutions périodiques de , de période minimale prescrite. On étend ces résultats aux systèmes hamiltoniens du premier ordre.
Cite this article
Antonio Ambrosetti, Vittorio Coti Zelati, Solutions with minimal period for Hamiltonian systems in a potential well. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), no. 3, pp. 275–296
DOI 10.1016/S0294-1449(16)30369-9