Solutions with minimal period for Hamiltonian systems in a potential well
Antonio Ambrosetti
Scuola Normale Superiore, 56100 Pisa, ItalyVittorio Coti Zelati
Scuola Internazionale Superiore di Studi Avanzati, Strada Costiera 11, 34014 Trieste, Italy

Abstract
Let U ∈ C2(Ω), where Ω is a bounded set in ℝN Suppose that U(x) tends to + ∞ as x tends to ∂Ω. Our main results concern the existence of periodic solutions of \( −x\limits^{¨} + \mathrm{U}′(x) \) having a prescribed number T as minimal period. The results are also generalized to first order Hamiltonian systems.
Résumé
Soit U ∈ C2(Ω), où Ω est un ouvert donné de ℝN. On suppose que U(x) → + ∞ quand x → ∂Ω. On montre l’existence de solutions périodiques de \( x\limits^{¨} + \mathrm{U}′(x) = 0 \), de période minimale prescrite. On étend ces résultats aux systèmes hamiltoniens du premier ordre.
Cite this article
Antonio Ambrosetti, Vittorio Coti Zelati, Solutions with minimal period for Hamiltonian systems in a potential well. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), no. 3, pp. 275–296
DOI 10.1016/S0294-1449(16)30369-9