Maximum principles and a priori estimates for a class of problems from nonlinear elasticity

  • Patricia Bauman

    Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.
  • Nicholas C. Owen

    The University of Sheffield, Department of Applied and Computational Mathematics, Sheffield S10 2TN, England
  • Daniel Phillips

    Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.

Abstract

We consider smooth solutions, , to the nonlinear elliptic system associated with a two dimensional elastic material which has energy functional

The function is nonnegative, convex and unbounded in a neighborhood of zero. Two maximum principles are proved for and we show that if then and are bounded a priori in terms of and for some .

Résumé

On considère une solution régulière du système elliptique non linéaire associé à la fonctionnelle d’énergie

en dimension 2, la fonction étant positive, convexe, et quand . On démontre deux principes du maximum et une estimation de à l’intérieur de .

Cite this article

Patricia Bauman, Nicholas C. Owen, Daniel Phillips, Maximum principles and a priori estimates for a class of problems from nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 2, pp. 119–157

DOI 10.1016/S0294-1449(16)30269-4