Maximum principles and a priori estimates for a class of problems from nonlinear elasticity
Patricia Bauman
Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.Nicholas C. Owen
The University of Sheffield, Department of Applied and Computational Mathematics, Sheffield S10 2TN, EnglandDaniel Phillips
Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.
Abstract
We consider smooth solutions, , to the nonlinear elliptic system associated with a two dimensional elastic material which has energy functional
The function is nonnegative, convex and unbounded in a neighborhood of zero. Two maximum principles are proved for and we show that if then and are bounded a priori in terms of and for some .
Résumé
On considère une solution régulière du système elliptique non linéaire associé à la fonctionnelle d’énergie
en dimension 2, la fonction étant positive, convexe, et quand . On démontre deux principes du maximum et une estimation de à l’intérieur de .
Cite this article
Patricia Bauman, Nicholas C. Owen, Daniel Phillips, Maximum principles and a priori estimates for a class of problems from nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 2, pp. 119–157
DOI 10.1016/S0294-1449(16)30269-4