On the analysis of traveling waves to a nonlinear flux limited reaction–diffusion equation
Juan Campos
Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, SpainPilar Guerrero
Centre de Recerca Matemática, Campus de Bellaterra, Edifici C. 08193 Bellaterra, Barcelona, SpainÓscar Sánchez
Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, SpainJuan Soler
Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Abstract
In this paper we study the existence and qualitative properties of traveling waves associated with a nonlinear flux limited partial differential equation coupled to a Fisher–Kolmogorov–Petrovskii–Piskunov type reaction term. We prove the existence and uniqueness of finite speed moving fronts of classical regularity, but also the existence of discontinuous entropy traveling wave solutions.
Cite this article
Juan Campos, Pilar Guerrero, Óscar Sánchez, Juan Soler, On the analysis of traveling waves to a nonlinear flux limited reaction–diffusion equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), no. 1, pp. 141–155
DOI 10.1016/J.ANIHPC.2012.07.001