Clustered solutions around harmonic centers to a coupled elliptic system
Teresa D'Aprile
Dipartimento di Matematica, via E. Orabona 4, 70125 Bari, ItalyJuncheng Wei
Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
Abstract
We study the following system of Schrödinger–Maxwell equations
where is a smooth and bounded domain of . We prove that for any integer the system has a family of solutions such that the form of consists of spikes concentrating at a harmonic center of as . Furthermore we show that the spikes approach the vertexes of a configuration which maximizes a suitable geometrical problem.
Résumé
On étudie le système d'équations de Schrödinger–Maxwell suivant :
où est un ouvert borné régulier. On montre que pour tout entier le système a une famille de solutions telle que la forme de consiste en pointes qui se concentrent sur un centre harmonique de lorsque . On montre, en plus, que les pointes approchent les sommets d'une configuration qui maximise un problème géométrique.
Cite this article
Teresa D'Aprile, Juncheng Wei, Clustered solutions around harmonic centers to a coupled elliptic system. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 4, pp. 605–628
DOI 10.1016/J.ANIHPC.2006.04.003