Periodic and heteroclinic orbits for a periodic hamiltonian system
Paul H. Rabinowitz
Center for the Mathematical Sciences, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Abstract
Consider the Hamiltonian system:
where and is periodic in , . It is known that (★) then possesses at least equilibrium solutions. Here we (a) give criteria for so that (★) has non-constant periodic solutions and (b) prove the existence of multiple heteroclinic orbits joining maxima of .
Résumé
On considère le système hamiltonien
où et est périodique en q. On sait qu’il existe points d’équilibre au moins. Nous donnons ici des conditions sur pour que (★) ait des solutions périodiques non constantes et des trajectoires hétéroclines joignant les maxima de .
Cite this article
Paul H. Rabinowitz, Periodic and heteroclinic orbits for a periodic hamiltonian system. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 5, pp. 331–346
DOI 10.1016/S0294-1449(16)30314-6