The stability of one dimensional stationary flows of compressible viscous fluids
H. Beirão da Veiga
Istituto Matematiche Applicate « U. Dini », University of Pisa, 1-56100 Pisa, Italy
Abstract
In [1], § 5 we gave a necessary and sufficient condition for the existence of stationary solutions for the system (1.1) in the presence of arbitrarily large external forces . Here we prove, see theorem 2.1, that every stationary solution is necessarily stable. We use Euler coordinates, since a proof in Lagrange coordinates (see for instance [2], [3], [4]) should present greater obstacles.
Résumé
On démontre que toute solution du système d’équations décrivant le mouvement unidimensionnel d’un fluide compressible et visqueux (avec des forces arbitraires et indépendantes du temps) est nécessairement stable.
Cite this article
H. Beirão da Veiga, The stability of one dimensional stationary flows of compressible viscous fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), no. 4, pp. 259–268
DOI 10.1016/S0294-1449(16)30291-8