Biting theorems for Jacobians and their applications
K. Zhang
Department of Mathematics, Peking University, Beijing 100871, China; Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K.
Abstract
Weak continuity for sequences of Jacobians of vector-valued functions in in the sense of Chacon’s Biting Lemma [13] is established via a maximal function method developed by Acerbi and Fusco [1]. A « div-curl » Lemma in the same spirit is also proved. The results are applied to the existence problem of nonlinear elastostatics and to a problem involving rank-one connections appearing in the theory of phase transitions.
Résumé
On démontre un théorème de continuité faible, au sens du lemme de morsure de Chacon, pour des suites de jacobiens de fonctions dans , ainsi qu’un lemme « div-rot ». Pour ce faire, on utilise la méthode de fonction maximale introduite par Acerbi et Fusco.
Cite this article
K. Zhang, Biting theorems for Jacobians and their applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), no. 4, pp. 345–365
DOI 10.1016/S0294-1449(16)30296-7