Existence of geodesics for the Lorentz metric of a stationary gravitational field
Vieri Benci
Istituto di Matematiche Applicate, Università, 56100 Pisa, ItalyDonato Fortunato
Dipartimento di Matematica, Università, 70125 Bari, Italy
Abstract
Let g = g(z) (z = (z0, …, z3) ∈ ℝ4) be a Lorentz metric (with signature +, −, −, −) on the space-time manifold ℝ4. Suppose that g is stationary, i.e. g does not depend on z0. Then we prove, under some other mild assumptions on g, that for any two points a, b ∈ ℝ4 there exists a geodesic, with respect to g, joining a and b.
Résumé
Soit g = g(z) (z = (z0, …, z3) ∈ ℝ4) une métrique de Lorentz (avec signature +, −, −, −) sur l’espace-temps ℝ4. On suppose que g soit stationnaire, c’est-à-dire indépendante de z0. Nous démontrons, sous des autres convenable hypothèses sur g, l’existence d’arcs de géodésique joignant deux points a, b arbitrairement donné dans ℝ4.
Cite this article
Vieri Benci, Donato Fortunato, Existence of geodesics for the Lorentz metric of a stationary gravitational field . Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), no. 1, pp. 27–35
DOI 10.1016/S0294-1449(16)30308-0