The initial-boundary value problem for the non-barotropic compressible Euler equations: structural-stability and data dependence

  • H. Beirão da Veiga

    Accademia Nazionale dei Lincei, Centro Linceo Interdisciplinare “B. Segre” via della Lungara, 10 Rome, Italy

Abstract

We study the initial-boundary value problem for general compressible inviscid fluids. Let and denote initial data and corresponding solutions, respectively. From the point of view of dynamical systems, a very basic problem is to prove that converges to in if converges to in ; this is proved in Theorem 1.2 below. It must be pointed out that convergence in and in weak- (easy consequences of the a priori estimates used to prove the existence theorem) have minor significance as part of the mathematical theory. We also show (Theorem 1.3) that if approaches in then approaches in the norm . In particular, small perturbations in the law of state generate small perturbations in the trajectory of the solution, with respect to the right metric.

Résumé

Nous étudions le problème mixte pour des fluides non visqueux, dans le cas général. Soient et respectivement les données initiales et les solutions correspondantes. Du point de vue des systèmes dynamiques, un problème essentiel consiste à démontrer que converge vers dans lorsque converge vers dans ; on démontre ce résultat dans le Théorème 1.2. En plus, on démontre (Théorème 1.3) que si converge vers dans alors converge vers dans .

Cite this article

H. Beirão da Veiga, The initial-boundary value problem for the non-barotropic compressible Euler equations: structural-stability and data dependence. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), no. 3, pp. 297–311

DOI 10.1016/S0294-1449(16)30186-X