The closing lemma for generic endomorphisms
Martín Sambarino
CMAT – Fac. de Ciencias, Univ. de la República, Iguá 4225, CP:11400 Montevideo, UruguayAlvaro Rovella
CMAT – Fac. de Ciencias, Univ. de la República, Iguá 4225, CP:11400 Montevideo, Uruguay
Abstract
Given a compact -dimensional manifold and , consider the space of self mappings of . We prove here that for every map in a residual subset of , the closing lemma holds. In particular, it follows that the set of periodic points is dense in the nonwandering set of a generic map. The proof is based on a geometric result asserting that for generic maps the future orbit of every point in visits the critical set at most times.
Cite this article
Martín Sambarino, Alvaro Rovella, The closing lemma for generic endomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 6, pp. 1461–1469
DOI 10.1016/J.ANIHPC.2010.09.003