JournalsaihpcVol. 30, No. 2pp. 337–365

A multidimensional nonlinear sixth-order quantum diffusion equation

  • Daniel Matthes

    Zentrum für Mathematik, Technische Universität München, 85747 Garching, Germany
  • Mario Bukal

    Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
  • Ansgar Jüngel

    Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
A multidimensional nonlinear sixth-order quantum diffusion equation cover
Download PDF

Abstract

This paper is concerned with the analysis of a sixth-order nonlinear parabolic equation whose solutions describe the evolution of the particle density in a quantum fluid. We prove the global-in-time existence of weak nonnegative solutions in two and three space dimensions under periodic boundary conditions. Moreover, we show that these solutions are smooth and classical whenever the particle density is strictly positive, and we prove the long-time convergence to the spatial homogeneous equilibrium at a universal exponential rate. Our analysis strongly uses the Lyapunov property of the entropy functional.

Cite this article

Daniel Matthes, Mario Bukal, Ansgar Jüngel, A multidimensional nonlinear sixth-order quantum diffusion equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), no. 2, pp. 337–365

DOI 10.1016/J.ANIHPC.2012.08.003