Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems

  • Andrzej Szulkin

    Department of Mathematics, University of Stockholm, Box 6701, 113 85 Stockholm, Sweden

Abstract

Let be a real Banach space and a function on such that with and convex, proper and lower semicontinuous. A point is said to be critical if and . The paper contains a number of existence theorems for critical points of functions of the above mentioned type. Critical levels of saddle type are characterized by minimax principles. The results are applied to variational inequalities and variational equations with single- and multivalued operators, which arise from studying certain elliptic boundary value problems.

Résumé

Soit un espace de Banach et une fonction sur de la forme , est et est convexe s. c. i., pouvant prendre la valeur . On définit une notion naturelle de point critique, et l’on démontre des théorèmes d’existence par des méthodes de minimax, du type Liusternik–Schnivelman. On applique ces résultats à des équations et inéquations variationnelles de type elliptique.

Cite this article

Andrzej Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), no. 2, pp. 77–109

DOI 10.1016/S0294-1449(16)30389-4