Gelfand type quasilinear elliptic problems with quadratic gradient terms
José Carmona
Departamento de Matemáticas, Universidad de Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, SpainPedro J. Martínez-Aparicio
Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, 30202 Murcia, SpainDavid Arcoya
Departamento de Análisis Matemático, Campus Fuentenueva S/N, Universidad de Granada, 18071 Granada, Spain
Abstract
In this paper, for and positive parameters and , we study the existence of positive solution for the quasilinear model problem
We prove that the maximal set of for which the problem has at least one positive solution is an interval , with , and there exists a minimal regular positive solution for every . We also prove, under suitable conditions depending on the dimension and the parameters , , , that for there exists a minimal regular positive solution. Moreover we characterize minimal solutions as those solutions satisfying a stability condition in the case .
Cite this article
José Carmona, Pedro J. Martínez-Aparicio, David Arcoya, Gelfand type quasilinear elliptic problems with quadratic gradient terms. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 2, pp. 249–265
DOI 10.1016/J.ANIHPC.2013.03.002