Perturbations of quadratic Hamiltonian two-saddle cycles
Lubomir Gavrilov
Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS IMT,F-31062 Toulouse Cedex 9, FranceIliya D. Iliev
Institute of Mathematics, Bulgarian Academy of Sciences, Bl. 8, 1113 Sofia, Bulgaria

Abstract
We prove that the number of limit cycles which bifurcate from a two-saddle loop of a planar quadratic Hamiltonian system, under an arbitrary quadratic deformation, is less than or equal to three.
Cite this article
Lubomir Gavrilov, Iliya D. Iliev, Perturbations of quadratic Hamiltonian two-saddle cycles. Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 2, pp. 307–324
DOI 10.1016/J.ANIHPC.2013.12.001