Polynomial propagation of moments and global existence for a Vlasov–Poisson system with a point charge

  • Laurent Desvillettes

    CMLA, ENS Cachan & CNRS, 61 Av. du Pdt. Wilson, 94235 Cachan Cedex, France
  • Evelyne Miot

    Université Paris-Sud, Département de mathématiques, Bâtiment 425, 91405 Orsay, France
  • Chiara Saffirio

    Institute for Applied Mathematics, University of Bonn, 53115 Bonn, Germany

Abstract

In this paper, we extend to the case of initial data constituted of a Dirac mass plus a bounded density (with finite moments) the theory of Lions and Perthame [8] for the Vlasov–Poisson equation. Our techniques also provide polynomially growing in time estimates for moments of the bounded density.

Cite this article

Laurent Desvillettes, Evelyne Miot, Chiara Saffirio, Polynomial propagation of moments and global existence for a Vlasov–Poisson system with a point charge. Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 2, pp. 373–400

DOI 10.1016/J.ANIHPC.2014.01.001