Polynomial propagation of moments and global existence for a Vlasov–Poisson system with a point charge
Laurent Desvillettes
CMLA, ENS Cachan & CNRS, 61 Av. du Pdt. Wilson, 94235 Cachan Cedex, FranceEvelyne Miot
Université Paris-Sud, Département de mathématiques, Bâtiment 425, 91405 Orsay, FranceChiara Saffirio
Institute for Applied Mathematics, University of Bonn, 53115 Bonn, Germany
Abstract
In this paper, we extend to the case of initial data constituted of a Dirac mass plus a bounded density (with finite moments) the theory of Lions and Perthame [8] for the Vlasov–Poisson equation. Our techniques also provide polynomially growing in time estimates for moments of the bounded density.
Cite this article
Laurent Desvillettes, Evelyne Miot, Chiara Saffirio, Polynomial propagation of moments and global existence for a Vlasov–Poisson system with a point charge. Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 2, pp. 373–400
DOI 10.1016/J.ANIHPC.2014.01.001