Lusternik-Schnirelman-theory for Lagrangian intersections

  • H. Hofer

    Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Abstract

Consider a compact symplectic manifold together with a pair of isotopic compact Lagrangian submanifolds such that .

Using Gromov’s theory of (almost) holomorphic curves the cohomological properties of a family of holomorphic disks are studied. By means of a stretching construction for those disks and a Lusternik–Schnirelman theory in compact topological spaces cuplength estimates for the intersection set are derived.

Résumé

On examiṅe une variété symplectique compacte munie d’un couple de sous-variétés lagrangiennes isotopes telles que .

En utilisant la théorie des courbes presque holomorphes, développée par Gromov, on étudie la cohomologie de certaines familles de disques holomorphes. On en déduit, par la théorie de Lusternik–Schnirelman, des estimations du cuplength de l’intersection .

Cite this article

H. Hofer, Lusternik-Schnirelman-theory for Lagrangian intersections. Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 5, pp. 465–499

DOI 10.1016/S0294-1449(16)30339-0