Nonlinear eigenvalues and bifurcation problems for Pucci's operators
Alexander Quaas
Departamento de Matemática, Universidad Santa María, Casilla: V-110, Avda. Espanã 1680, Valparaíso, ChileJérôme Busca
Ceremade UMR CNRS 7534, Université Paris IX–Dauphine, 75775 Paris Cedex 16, FranceMaria J. Esteban
Ceremade UMR CNRS 7534, Université Paris IX–Dauphine, 75775 Paris Cedex 16, France
Abstract
In this paper we extend existing results concerning generalized eigenvalues of Pucci's extremal operators. In the radial case, we also give a complete description of their spectrum, together with an equivalent of Rabinowitz's Global Bifurcation Theorem. This allows us to solve nonlinear equations involving Pucci's operators.
Cite this article
Alexander Quaas, Jérôme Busca, Maria J. Esteban, Nonlinear eigenvalues and bifurcation problems for Pucci's operators. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 2, pp. 187–206
DOI 10.1016/J.ANIHPC.2004.05.004