Ancient shrinking spherical interfaces in the Allen–Cahn flow
Konstantinos T. Gkikas
Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, ChileManuel del Pino
Departamento de Ingeniería Matemática, and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
Abstract
We consider the parabolic Allen–Cahn equation in , ,
We construct an ancient radially symmetric solution with any given number of transition layers between and . At main order they consist of time-traveling copies of with spherical interfaces distant one to each other as . These interfaces are resemble at main order copies of the shrinking sphere ancient solution to mean the flow by mean curvature of surfaces: . More precisely, if denotes the heteroclinic 1-dimensional solution of given by we have
where
Cite this article
Konstantinos T. Gkikas, Manuel del Pino, Ancient shrinking spherical interfaces in the Allen–Cahn flow. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 1, pp. 187–215
DOI 10.1016/J.ANIHPC.2017.03.005